1,700 research outputs found

    Computationally-Efficient Minimum-Time Aircraft Routes in the Presence of Winds

    Get PDF
    A computationally efficient algorithm for minimizing the flight time of an aircraft in a variable wind field has been invented. The algorithm, referred to as Neighboring Optimal Wind Routing (NOWR), is based upon neighboring-optimal-control (NOC) concepts and achieves minimum-time paths by adjusting aircraft heading according to wind conditions at an arbitrary number of wind measurement points along the flight route. The NOWR algorithm may either be used in a fast-time mode to compute minimum- time routes prior to flight, or may be used in a feedback mode to adjust aircraft heading in real-time. By traveling minimum-time routes instead of direct great-circle (direct) routes, flights across the United States can save an average of about 7 minutes, and as much as one hour of flight time during periods of strong jet-stream winds. The neighboring optimal routes computed via the NOWR technique have been shown to be within 1.5 percent of the absolute minimum-time routes for flights across the continental United States. On a typical 450-MHz Sun Ultra workstation, the NOWR algorithm produces complete minimum-time routes in less than 40 milliseconds. This corresponds to a rate of 25 optimal routes per second. The closest comparable optimization technique runs approximately 10 times slower. Airlines currently use various trial-and-error search techniques to determine which of a set of commonly traveled routes will minimize flight time. These algorithms are too computationally expensive for use in real-time systems, or in systems where many optimal routes need to be computed in a short amount of time. Instead of operating in real-time, airlines will typically plan a trajectory several hours in advance using wind forecasts. If winds change significantly from forecasts, the resulting flights will no longer be minimum-time. The need for a computationally efficient wind-optimal routing algorithm is even greater in the case of new air-traffic-control automation concepts. For air-traffic-control automation, thousands of wind-optimal routes may need to be computed and checked for conflicts in just a few minutes. These factors motivated the need for a more efficient wind-optimal routing algorithm

    Construction and measurements of a vacuum-swing-adsorption radon-mitigation system

    Full text link
    Long-lived alpha and beta emitters in the 222^{222}Rn decay chain on (and near) detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double-beta decay, and in screening detectors. In order to reduce backgrounds from radon-daughter plate-out onto the wires of the BetaCage during its assembly, an ultra-low-radon cleanroom is being commissioned at Syracuse University using a vacuum-swing-adsorption radon-mitigation system. The radon filter shows ~20×\times reduction at its output, from 7.47±\pm0.56 to 0.37±\pm0.12 Bq/m3^3, and the cleanroom radon activity meets project requirements, with a lowest achieved value consistent with that of the filter, and levels consistently < 2 Bq/m3^3.Comment: 5 pages, 3 figures, Proceedings of Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 201

    A study of the fast fission effect in lattices of uranium rods in heavy water

    Get PDF
    NYO-9661Includes bibliographical references (p. 168-171)AT (30-1) 234

    3D simulations of vertical displacement events in tokamaks: A benchmark of M3D-C1^1, NIMROD and JOREK

    Full text link
    In recent years, the nonlinear 3D magnetohydrodynamic codes JOREK, M3D-C1^1 and NIMROD developed the capability of modelling realistic 3D vertical displacement events (VDEs) including resistive walls. In this paper, a comprehensive 3D VDE benchmark is presented between these state of the art codes. The simulated case is based on an experimental NSTX plasma but with a simplified rectangular wall. In spite of pronounced differences between physics models and numerical methods, the comparison shows very good agreement in the relevant quantities used to characterize disruptions such as the 3D wall forces and energy decay. This benchmark does not only bring confidence regarding the use of the mentioned codes for disruption studies, but also shows differences with respect to the used models (e.g. reduced versus full MHD models). The simulations show important 3D features for a NSTX plasma such as the self-consistent evolution of the halo current and the origin of the wall forces. In contrast to other reduced MHD models based on an ordering in the aspect ratio, the ansatz based JOREK reduced MHD model allows capturing the 3D dynamics even in the spherical tokamak limit considered here

    The acceleration and storage of radioactive ions for a neutrino factory

    Full text link
    The term beta-beam has been coined for the production of a pure beam of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. This concept requires radioactive ions to be accelerated to a Lorentz gamma of 150 for 6He and 60 for 18Ne. The neutrino source itself consists of a storage ring for this energy range, with long straight sections in line with the experiment(s). Such a decay ring does not exist at CERN today, nor does a high-intensity proton source for the production of the radioactive ions. Nevertheless, the existing CERN accelerator infrastructure could be used as this would still represent an important saving for a beta-beam facility. This paper outlines the first study, while some of the more speculative ideas will need further investigations.Comment: Accepted for publication in proceedings of Nufact02, London, 200

    Method for Efficiency and Time Response Measurement on Diverse Target Ion Sources with Stable Alkali

    Get PDF
    International audienceDevelopments of new setups for radioactive ion beam production by the isotope-separator-on-line (ISOL) method are underway at GANIL in the frame of the SPIRAL (Système de Production d'Ions Radioactifs Accélérés en Ligne) and SPIRAL-II projects. The measurement of total efficiency and time behaviour of these new target/ion-source systems (TISSs) is a crucial step for these devices which aims to produce short-lived isotopes with high intensity. The overall atom-to-ion transformation efficiency depends on several processes: diffusion of the atoms out of the production target, effusion towards the ion source and ionization. The efficiency can be extracted using the ratio between the emerging yield and implanted flux in the TISS. Several methods have already been developed to achieve these measurements: the use of stable or radioactive beams, gas injection, or the introduction of solid material into the TISS. This paper focuses primarily on a method that uses stable alkali. A pulsed/CW alkali ion gun has been built and will be used to optimise diverse TISSs

    Intestinal kinetics from digestion of milk proteins in humans

    No full text
    Objective. We aim to assess in humans the intestinal digestion of two protein fractions from milk, i.e. a soluble (SP) and non-soluble (casein; CAS) proteins, that exhibit opposite chemical and digestive characteristics
    corecore