6,516 research outputs found

    A formal support to business and architectural design for service-oriented systems

    Get PDF
    Architectural Design Rewriting (ADR) is an approach for the design of software architectures developed within Sensoria by reconciling graph transformation and process calculi techniques. The key feature that makes ADR a suitable and expressive framework is the algebraic handling of structured graphs, which improves the support for specification, analysis and verification of service-oriented architectures and applications. We show how ADR is used as a formal ground for high-level modelling languages and approaches developed within Sensoria

    Evaluating the performance of model transformation styles in Maude

    Get PDF
    Rule-based programming has been shown to be very successful in many application areas. Two prominent examples are the specification of model transformations in model driven development approaches and the definition of structured operational semantics of formal languages. General rewriting frameworks such as Maude are flexible enough to allow the programmer to adopt and mix various rule styles. The choice between styles can be biased by the programmer’s background. For instance, experts in visual formalisms might prefer graph-rewriting styles, while experts in semantics might prefer structurally inductive rules. This paper evaluates the performance of different rule styles on a significant benchmark taken from the literature on model transformation. Depending on the actual transformation being carried out, our results show that different rule styles can offer drastically different performances. We point out the situations from which each rule style benefits to offer a valuable set of hints for choosing one style over the other

    Functorial Semantics for Petri Nets under the Individual Token Philosophy

    Get PDF
    Although the algebraic semantics of place/transition Petri nets under the collective token philosophy has been fully explained in terms of (strictly) symmetric (strict) monoidal categories, the analogous construction under the individual token philosophy is not completely satisfactory because it lacks universality and also functoriality. We introduce the notion of pre-net to recover these aspects, obtaining a fully satisfactory categorical treatment centered on the notion of adjunction. This allows us to present a purely logical description of net behaviours under the individual token philosophy in terms of theories and theory morphisms in partial membership equational logic, yielding a complete match with the theory developed by the authors for the collective token view of net

    Two-parameter non-linear spacetime perturbations: gauge transformations and gauge invariance

    Get PDF
    An implicit fundamental assumption in relativistic perturbation theory is that there exists a parametric family of spacetimes that can be Taylor expanded around a background. The choice of the latter is crucial to obtain a manageable theory, so that it is sometime convenient to construct a perturbative formalism based on two (or more) parameters. The study of perturbations of rotating stars is a good example: in this case one can treat the stationary axisymmetric star using a slow rotation approximation (expansion in the angular velocity Omega), so that the background is spherical. Generic perturbations of the rotating star (say parametrized by lambda) are then built on top of the axisymmetric perturbations in Omega. Clearly, any interesting physics requires non-linear perturbations, as at least terms lambda Omega need to be considered. In this paper we analyse the gauge dependence of non-linear perturbations depending on two parameters, derive explicit higher order gauge transformation rules, and define gauge invariance. The formalism is completely general and can be used in different applications of general relativity or any other spacetime theory.Comment: 22 pages, 3 figures. Minor changes to match the version appeared in Classical and Quantum Gravit

    General formulation of general-relativistic higher-order gauge-invariant perturbation theory

    Full text link
    Gauge-invariant treatments of general-relativistic higher-order perturbations on generic background spacetime is proposed. After reviewing the general framework of the second-order gauge-invariant perturbation theory, we show the fact that the linear-order metric perturbation is decomposed into gauge-invariant and gauge-variant parts, which was the important premis of this general framework. This means that the development the higher-order gauge-invariant perturbation theory on generic background spacetime is possible. A remaining issue to be resolve is also disscussed.Comment: 4 pages, no figure. (v3) some explanations are added and a reference is adde

    The central structure of Broad Absorption Line QSOs: observational characteristics in the cm-mm wavelength domain

    Get PDF
    Accounting for ~20% of the total QSO population, Broad Absorption Line QSOs are still an unsolved problem in the AGN context. They present wide troughs in the UV spectrum, due to material with velocities up to 0.2 c toward the observer. The two models proposed in literature try to explain them as a particular phase of the evolution of QSOs or as normal QSOs, but seen from a particular line of sight. We built a statistically complete sample of Radio-Loud BAL QSOs, and carried out an observing campaign to piece together the whole spectrum in the cm wavelength domain, and highlight all the possible differences with respect to a comparison sample of Radio-Loud non-BAL QSOs. VLBI observations at high angular resolution have been performed, to study the pc-scale morphology of these objects. Finally, we tried to detect a possible dust component with observations at mm-wavelengths. Results do not seem to indicate a young age for all BAL QSOs. Instead a variety of orientations and morphologies have been found, constraining the outflows foreseen by the orientation model to have different possible angles with respect to the jet axis

    Nets, relations and linking diagrams

    Full text link
    In recent work, the author and others have studied compositional algebras of Petri nets. Here we consider mathematical aspects of the pure linking algebras that underly them. We characterise composition of nets without places as the composition of spans over appropriate categories of relations, and study the underlying algebraic structures.Comment: 15 pages, Proceedings of 5th Conference on Algebra and Coalgebra in Computer Science (CALCO), Warsaw, Poland, 3-6 September 201

    Dependencies and Simultaneity in Membrane Systems

    Full text link
    Membrane system computations proceed in a synchronous fashion: at each step all the applicable rules are actually applied. Hence each step depends on the previous one. This coarse view can be refined by looking at the dependencies among rule occurrences, by recording, for an object, which was the a rule that produced it and subsequently (in a later step), which was the a rule that consumed it. In this paper we propose a way to look also at the other main ingredient in membrane system computations, namely the simultaneity in the rule applications. This is achieved using zero-safe nets that allows to synchronize transitions, i.e., rule occurrences. Zero-safe nets can be unfolded into occurrence nets in a classical way, and to this unfolding an event structure can be associated. The capability of capturing simultaneity of zero-safe nets is transferred on the level of event structure by adding a way to express which events occur simultaneously

    Physical properties, starspot activity, orbital obliquity, and transmission spectrum of the Qatar-2 planetary system from multi-colour photometry

    Full text link
    We present seventeen high-precision light curves of five transits of the planet Qatar-2b, obtained from four defocussed 2m-class telescopes. Three of the transits were observed simultaneously in the SDSS griz passbands using the seven-beam GROND imager on the MPG/ESO 2.2-m telescope. A fourth was observed simultaneously in Gunn grz using the CAHA 2.2-m telescope with BUSCA, and in r using the Cassini 1.52-m telescope. Every light curve shows small anomalies due to the passage of the planetary shadow over a cool spot on the surface of the host star. We fit the light curves with the prism+gemc model to obtain the photometric parameters of the system and the position, size and contrast of each spot. We use these photometric parameters and published spectroscopic measurements to obtain the physical properties of the system to high precision, finding a larger radius and lower density for both star and planet than previously thought. By tracking the change in position of one starspot between two transit observations we measure the orbital obliquity of Qatar-2 b to be 4.3 \pm 4.5 degree, strongly indicating an alignment of the stellar spin with the orbit of the planet. We calculate the rotation period and velocity of the cool host star to be 11.4 \pm 0.5 d and 3.28 \pm 0.13 km/s at a colatitude of 74 degree. We assemble the planet's transmission spectrum over the 386-976 nm wavelength range and search for variations of the measured radius of Qatar-2 b as a function of wavelength. Our analysis highlights a possible H2/He Rayleigh scattering in the blue.Comment: 20 pages, 14 figures, to appear in Monthly Notices of the Royal Astronomical Societ

    Gauge invariant Boltzmann equation and the fluid limit

    Full text link
    This article investigates the collisionless Boltzmann equation up to second order in the cosmological perturbations. It describes the gauge dependence of the distribution function and the construction of a gauge invariant distribution function and brightness, and then derives the gauge invariant fluid limit.Comment: 36 page
    corecore