3,636 research outputs found

    Targeted searches for gravitational waves from radio pulsars

    Get PDF
    An overview of the searches for gravitational waves from radio pulsars with LIGO and GEO is given. We give a brief description of the algorithm used in these targeted searches and provide end-to-end validation of the technique through hardware injections. We report on some aspects of the recent S3/S4 LIGO and GEO search for signals from several pulsars. The gaussianity of narrow frequency bands of S3/S4 LIGO data, where pulsar signals are expected, is assessed with Kolmogorov-Smirnov tests. Preliminary results from the S3 run with a network of four detectors are given for pulsar J1939+2134

    Focal plane wavefront sensor achromatization : The multireference self-coherent camera

    Full text link
    High contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. But this can be challenging because of the planet-to-star small angular separation and high flux ratio. Recently, optimized instruments like SPHERE and GPI were installed on 8m-class telescopes. These will probe young gazeous exoplanets at large separations (~1au) but, because of uncalibrated aberrations that induce speckles in the coronagraphic images, they are not able to detect older and fainter planets. There are always aberrations that are slowly evolving in time. They create quasi-static speckles that cannot be calibrated a posteriori with sufficient accuracy. An active correction of these speckles is thus needed to reach very high contrast levels (>1e7). This requires a focal plane wavefront sensor. Our team proposed the SCC, the performance of which was demonstrated in the laboratory. As for all focal plane wavefront sensors, these are sensitive to chromatism and we propose an upgrade that mitigates the chromatism effects. First, we recall the principle of the SCC and we explain its limitations in polychromatic light. Then, we present and numerically study two upgrades to mitigate chromatism effects: the optical path difference method and the multireference self-coherent camera. Finally, we present laboratory tests of the latter solution. We demonstrate in the laboratory that the MRSCC camera can be used as a focal plane wavefront sensor in polychromatic light using an 80 nm bandwidth at 640 nm. We reach a performance that is close to the chromatic limitations of our bench: contrast of 4.5e-8 between 5 and 17 lambda/D. The performance of the MRSCC is promising for future high-contrast imaging instruments that aim to actively minimize the speckle intensity so as to detect and spectrally characterize faint old or light gaseous planets.Comment: 14 pages, 20 figure

    Ultra-dense magnetoresistive mass memory

    Get PDF
    This report details the progress and accomplishments of Nonvolatile Electronics (NVE), Inc., on the design of the wafer scale MRAM mass memory system during the fifth quarter of the project. NVE has made significant progress this quarter on the one megabit design in several different areas. A test chip, which will verify a working GMR bit with the dimensions required by the 1 Meg chip, has been designed, laid out, and is currently being processed in the NVE labs. This test chip will allow electrical specifications, tolerances, and processing issues to be finalized before construction of the actual chip, thus providing a greater assurance of success of the final 1 Meg design. A model has been developed to accurately simulate the parasitic effects of unselected sense lines. This model gives NVE the ability to perform accurate simulations of the array electronic and test different design concepts. Much of the circuit design for the 1 Meg chip has been completed and simulated and these designs are included. Progress has been made in the wafer scale design area to verify the reliable operation of the 16 K macrocell. This is currently being accomplished with the design and construction of two stand alone test systems which will perform life tests and gather data on reliabiliy and wearout mechanisms for analysis

    Generalized Entropies

    Full text link
    We study an entropy measure for quantum systems that generalizes the von Neumann entropy as well as its classical counterpart, the Gibbs or Shannon entropy. The entropy measure is based on hypothesis testing and has an elegant formulation as a semidefinite program, a type of convex optimization. After establishing a few basic properties, we prove upper and lower bounds in terms of the smooth entropies, a family of entropy measures that is used to characterize a wide range of operational quantities. From the formulation as a semidefinite program, we also prove a result on decomposition of hypothesis tests, which leads to a chain rule for the entropy.Comment: 21 page

    Recent results on the search for continuous sources with LIGO and GEO600

    Full text link
    An overview of the searches for continuous gravitational wave signals in LIGO and GEO 600 performed on different recent science runs and results are presented. This includes both searching for gravitational waves from known pulsars as well as blind searches over a wide parameter space.Comment: TAUP2005 Proceedings to be published in Journal of Physics: Conference Serie

    Quantum widening of CDT universe

    Full text link
    The physical phase of Causal Dynamical Triangulations (CDT) is known to be described by an effective, one-dimensional action in which three-volumes of the underlying foliation of the full CDT play a role of the sole degrees of freedom. Here we map this effective description onto a statistical-physics model of particles distributed on 1d lattice, with site occupation numbers corresponding to the three-volumes. We identify the emergence of the quantum de-Sitter universe observed in CDT with the condensation transition known from similar statistical models. Our model correctly reproduces the shape of the quantum universe and allows us to analytically determine quantum corrections to the size of the universe. We also investigate the phase structure of the model and show that it reproduces all three phases observed in computer simulations of CDT. In addition, we predict that two other phases may exists, depending on the exact form of the discretised effective action and boundary conditions. We calculate various quantities such as the distribution of three-volumes in our model and discuss how they can be compared with CDT.Comment: 19 pages, 13 figure

    Generating Functions for Coherent Intertwiners

    Full text link
    We study generating functions for the scalar products of SU(2) coherent intertwiners, which can be interpreted as coherent spin network evaluations on a 2-vertex graph. We show that these generating functions are exactly summable for different choices of combinatorial weights. Moreover, we identify one choice of weight distinguished thanks to its geometric interpretation. As an example of dynamics, we consider the simple case of SU(2) flatness and describe the corresponding Hamiltonian constraint whose quantization on coherent intertwiners leads to partial differential equations that we solve. Furthermore, we generalize explicitly these Wheeler-DeWitt equations for SU(2) flatness on coherent spin networks for arbitrary graphs.Comment: 31 page

    Current State of the Electrodynamic Dust Shield for Mitigation

    Get PDF
    The Electrodynamic Dust Shield (EDS) has been developed as a means to lift, transport and remove dust from surfaces for over 18 years in the Electrostatics and Surface Physics Laboratory at NASA Kennedy Space Center. Resent advances in the technology have allowed large-scale EDSs to be fabricated using roll-to-roll techniques for quick efficient processing. The aim of the current research is to demonstrate the 3-dimensional (3-D) version of the EDS and its applicability to various surfaces of interest throughout the Artemis program that require dust mitigation. The conventional two dimensional (2-D) EDS has been comprised of interdigitated electrodes across a surface of alternating polarity to setup non-uniform electric fields in the location of interest for which the particles need to be removed. The 2-D system can be designed to accommodate various phases. For example, the two phase EDS is comprised of two electrodes 180 out of phase, while the 3-phase EDS is 120 out of phase with the adjacent leg. 4-phase EDS configurations are also possible but for each square wave a high voltage signal is applied to each leg

    Laboratory validation of the dual-zone phase mask coronagraph in broadband light at the high-contrast imaging THD-testbed

    Full text link
    Specific high contrast imaging instruments are mandatory to characterize circumstellar disks and exoplanets around nearby stars. Coronagraphs are commonly used in these facilities to reject the diffracted light of an observed star and enable the direct imaging and spectroscopy of its circumstellar environment. One important property of the coronagraph is to be able to work in broadband light. Among several proposed coronagraphs, the dual-zone phase mask coronagraph is a promising solution for starlight rejection in broadband light. In this paper, we perform the first validation of this concept in laboratory. First, we recall the principle of the dual-zone phase mask coronagraph. Then, we describe the high-contrast imaging THD testbed, the manufacturing of the components and the quality-control procedures. Finally, we study the sensitivity of our coronagraph to low-order aberrations (inner working angle and defocus) and estimate its contrast performance. Our experimental broadband light results are compared with numerical simulations to check agreement with the performance predictions. With the manufactured prototype and using a dark hole technique based on the self-coherent camera, we obtain contrast levels down to 21082\,10^{-8} between 5 and 17λ0/D\,\lambda_0/D in monochromatic light (640 nm). We also reach contrast levels of 41084\,10^{-8} between 7 and 17λ0/D\lambda_0/D in broadband (λ0=675\lambda_0=675 nm, Δλ=250\Delta\lambda=250 nm and Δλ/λ0=40\Delta\lambda / \lambda_0 = 40 %), which demonstrates the excellent chromatic performance of the dual-zone phase mask coronagraph. The performance reached by the dual-zone phase mask coronagraph is promising for future high-contrast imaging instruments that aim at detecting and spectrally characterizing old or light gaseous planets.Comment: 9 pages, 16 figure

    Innovative implementation by non-state actors in environment-related areas : towards a positive implementation gap ?

    Get PDF
    This contribution (presented in the first International Conference on Public Policy (ICPP) in Grenoble in June 2013) explores the phenomena of innovation in action ("innovative implementation"). To do so, we operationalize "innovative implementation" as a strategy by which (coalitions of) non-state actors seek to develop ad hoc solutions to address a given environmental issue, going beyond what is provided for in formal policy designs. Following an inductive research strategy, we elaborate a conceptual framework whose main advantage is to bring the actors and their coalition (in all their diversity) back in the analysis. More concretely, we state that perceiving implementation as broader 'social interaction processes' (De Boer & Bressers 2011) within which actors play strategic 'games' (Bardach 1977, Scharpf 1997) opens interesting lines of research to better account for their innovative and strategic behaviours. In a second step, we apply this framework to three strategies of innovative implementation in different contexts, and identify on this basis empirical regularities in the individual pathways related to the emergence and success (or failure) of these strategies
    corecore