We study generating functions for the scalar products of SU(2) coherent
intertwiners, which can be interpreted as coherent spin network evaluations on
a 2-vertex graph. We show that these generating functions are exactly summable
for different choices of combinatorial weights. Moreover, we identify one
choice of weight distinguished thanks to its geometric interpretation. As an
example of dynamics, we consider the simple case of SU(2) flatness and describe
the corresponding Hamiltonian constraint whose quantization on coherent
intertwiners leads to partial differential equations that we solve.
Furthermore, we generalize explicitly these Wheeler-DeWitt equations for SU(2)
flatness on coherent spin networks for arbitrary graphs.Comment: 31 page