36 research outputs found

    Prognostic value of changes in the expression of stem cell markers in the peripheral blood of patients with colon cancer

    Get PDF
    Cancer stem cells play an important role in carcinogenesis and resistance to treatment and may lead to metastasis. The isolation of circulating stem cells involves cell sorting based on the presence of cell surface markers. Many surface markers such as CD133, c-Kit, SOX, OCT4 and TWIST have been reported. In the present study, we determined the expression of different stem cell markers and their variation in expression at different stages of the treatment process. Samples of EDTA blood were collected from metastatic colorectal cancer patients, and circulating cancer stem cells were isolated for the analysis of the expression of stem cell markers using RT-PCR. These findings were correlated with the response to therapy. All statistical analyses were performed using the GraphPad Prism 5.03 software. Significant differences were found in the expression levels of the markers CD133, SOX2, OCT4 and TWIST1. No differences were found in c-Kit expression. Correlation in the expression levels of most of the markers was observed. Expression of CD133, OCT4, SOX2 and TWIST1 had a predictive value for colon cancer behavior. Evaluation of this stem cell gene expression panel may be useful for predicting the response during the process of treatment, and the relative easy access to samples facilitates this method. Moreover the correlation between CD133 and TWIST1 expression may be associated with tumor regrowth and metastatic relapse

    Insulin-Like Growth Factors Promote Vasculogenesis in Embryonic Stem Cells

    Get PDF
    The ability of embryonic stem cells to differentiate into endothelium and form functional blood vessels has been well established and can potentially be harnessed for therapeutic angiogenesis. However, after almost two decades of investigation in this field, limited knowledge exists for directing endothelial differentiation. A better understanding of the cellular mechanisms regulating vasculogenesis is required for the development of embryonic stem cell-based models and therapies. In this study, we elucidated the mechanistic role of insulin-like growth factors (IGF1 and 2) and IGF receptors (IGFR1 and 2) in endothelial differentiation using an embryonic stem cell embryoid body model. Both IGF1 or IGF2 predisposed embryonic stem to differentiate towards a mesodermal lineage, the endothelial precursor germ layer, as well as increased the generation of significantly more endothelial cells at later stages. Inhibition of IGFR1 signaling using neutralizing antibody or a pharmacological inhibitor, picropodophyllin, significantly reduced IGF-induced mesoderm and endothelial precursor cell formation. We confirmed that IGF-IGFR1 signaling stabilizes HIF1α and leads to up-regulation of VEGF during vasculogenesis in embryoid bodies. Understanding the mechanisms that are critical for vasculogenesis in various models will bring us one step closer to enabling cell based therapies for neovascularization

    Plasmid-based transient human stromal cell-derived factor-1 gene transfer improves cardiac function in chronic heart failure

    Get PDF
    We previously demonstrated that transient stromal cell-derived factor-1 alpha (SDF-1) improved cardiac function when delivered via cell therapy in ischemic cardiomyopathy at a time remote from acute myocardial infarction (MI) rats. We hypothesized that non-viral gene transfer of naked plasmid DNA-expressing hSDF-1 could similarly improve cardiac function. To optimize plasmid delivery, we tested SDF-1 and luciferase plasmids driven by the cytomegalovirus (CMV) promoter with (pCMVe) or without (pCMV) translational enhancers or α myosin heavy chain (pMHC) promoter in a rodent model of heart failure. In vivo expression of pCMVe was 10-fold greater than pCMV and pMHC expression and continued over 30 days. We directly injected rat hearts with SDF-1 plasmid 1 month after MI and assessed heart function. At 4 weeks after plasmid injection, we observed a 35.97 and 32.65% decline in fractional shortening (FS) in control (saline) animals and pMHC-hSDF1 animals, respectively, which was sustained to 8 weeks. In contrast, we observed a significant 24.97% increase in animals injected with the pCMVe-hSDF1 vector. Immunohistochemistry of cardiac tissue revealed a significant increase in vessel density in the hSDF-1-treated animals compared with control animals. Increasing SDF-1 expression promoted angiogenesis and improved cardiac function in rats with ischemic heart failure along with evidence of scar remodeling with a trend toward decreased myocardial fibrosis. These data demonstrate that stand-alone non-viral hSDF-1 gene transfer is a strategy for improving cardiac function in ischemic cardiomyopathy

    Injectable Materials for the Treatment of Myocardial Infarction and Heart Failure: The Promise of Decellularized Matrices

    Get PDF
    Cardiovascular disease continues to be the leading cause of death, suggesting that new therapies are needed to treat the progression of heart failure post-myocardial infarction. As cardiac tissue has a limited ability to regenerate itself, experimental biomaterial therapies have focused on the replacement of necrotic cardiomyocytes and repair of the damaged extracellular matrix. While acellular and cellular cardiac patches are applied surgically to the epicardial surface of the heart, injectable materials offer the prospective advantage of minimally invasive delivery directly into the myocardium to either replace the damaged extracellular matrix or to act as a scaffold for cell delivery. Cardiac-specific decellularized matrices offer the further advantage of being biomimetic of the native biochemical and structural matrix composition, as well as the potential to be autologous therapies. This review will focus on the requirements of an ideal scaffold for catheter-based delivery as well as highlight the promise of decellularized matrices as injectable materials for cardiac repair

    Bone marrow cells adopt the cardiomyogenic fate in vivo

    No full text
    The possibility that adult bone marrow cells (BMCs) retain a remarkable degree of developmental plasticity and acquire the cardiomyocyte lineage after infarction has been challenged, and the notion of BMC transdifferentiation has been questioned. The center of the controversy is the lack of unequivocal evidence in favor of myocardial regeneration by the injection of BMCs in the infarcted heart. Because of the interest in cell-based therapy for heart failure, several approaches including gene reporter assay, genetic tagging, cell genotyping, PCR-based detection of donor genes, and direct immunofluorescence with quantum dots were used to prove or disprove BMC transdifferentiation. Our results indicate that BMCs engraft, survive, and grow within the spared myocardium after infarction by forming junctional complexes with resident myocytes. BMCs and myocytes express at their interface connexin 43 and N-cadherin, and this interaction may be critical for BMCs to adopt the cardiomyogenic fate. With time, a large number of myocytes and coronary vessels are generated. Myocytes show a diploid DNA content and carry, at most, two sex chromosomes. Old and new myocytes show synchronicity in calcium transients, providing strong evidence in favor of the functional coupling of these two cell populations. Thus, BMCs transdifferentiate and acquire the cardiomyogenic and vascular phenotypes restoring the infarcted heart. Together, our studies reveal that locally delivered BMCs generate de novo myocardium composed of integrated cardiomyocytes and coronary vessels. This process occurs independently of cell fusion and ameliorates structurally and functionally the outcome of the heart after infarction. © 2007 by The National Academy of Sciences of the USA

    Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function

    No full text
    Ischemic heart disease is characterized chronically by a healed infarct, foci of myocardial scarring, cavitary dilation and impaired ventricular performance. These alterations can only be reversed by replacement of scarred tissue with functionally-competent myocardium. We tested whether cardiac progenitor cells (CPCs) implanted in proximity of healed infarcts or resident CPCs stimulated locally by HGF and IGF-1 (GFs) invade the scarred myocardium and generate myocytes and coronary vessels improving the hemodynamics of the infarcted heart. HGF is a powerful chemoattractant of CPCs and IGF-1 promotes their proliferation and survival. Injection of CPCs or GFs led to the replacement of ~42% of the scar with newly-formed myocardium, attenuated ventricular dilation and prevented the chronic decline in function of the infarcted heart. Cardiac repair was mediated by the ability of CPCs to synthesize MMPs that degraded collagen proteins, forming tunnels within the fibrotic tissue during their migration across the scarred myocardium. New myocytes had a 2n karyotype and possessed two sex chromosomes, excluding cell fusion. Clinically, CPCs represent an ideal candidate cell for cardiac repair in patients with chronic heart failure. CPCs may be isolated from myocardial biopsies and, following their expansion in vitro, administered back to the same patients avoiding the adverse effects associated with the use of non-autologous cells. Alternatively, GFs may be delivered locally to stimulate resident CPCs and promote myocardial regeneration. These forms of treatments could be repeated over time to reduce progressively tissue scarring and expand the working myocardium

    Spontaneous calcium oscillations regulate human cardiac progenitor cell growth

    No full text
    Rationale: The adult heart possesses a pool of progenitor cells stored in myocardial niches, but the mechanisms involved in the activation of this cell compartment are currently unknown. Objective: Ca(2+) promotes cell growth raising the possibility that changes in intracellular Ca(2+) initiate division of c-kit-positive human cardiac progenitor cells (hCPCs) and determine their fate. Methods and Results: Ca(2+) oscillations were identified in hCPCs and these events occurred independently from coupling with cardiomyocytes or the presence of extracellular Ca(2+). These findings were confirmed in the heart of transgenic mice in which enhanced green fluorescent protein was under the control of the c-kit promoter. Ca(2+) oscillations in hCPCs were regulated by the release of Ca(2+) from the endoplasmic reticulum through activation of inositol 1,4,5-triphosphate receptors (IP3Rs) and the reuptake of Ca(2+) by the sarco-/endoplasmic reticulum Ca(2+) pump (SERCA). IP3Rs and SERCA were highly expressed in hCPCs, whereas ryanodine receptors were not detected. Although Na(+)-Ca(2+) exchanger, store-operated Ca(2+) channels and plasma membrane Ca(2+) pump were present and functional in hCPCs, they had no direct effects on Ca(2+) oscillations. Conversely, Ca(2+) oscillations and their frequency markedly increased with ATP and histamine which activated purinoceptors and histamine-1 receptors highly expressed in hCPCs. Importantly, Ca(2+) oscillations in hCPCs were coupled with the entry of cells into the cell cycle and 5-bromodeoxyuridine incorporation. Induction of Ca(2+) oscillations in hCPCs before their intramyocardial delivery to infarcted hearts was associated with enhanced engraftment and expansion of these cells promoting the generation of a large myocyte progeny. Conclusion: IP3R-mediated Ca(2+) mobilization control hCPC growth and their regenerative potential. (Circ Res. 2009; 105: 764-774.

    Progenitor cells from the Explanted Heart generate immunocompatible myocardium within the Transplanted Donor Heart

    No full text
    Rationale: Chronic rejection, accelerated coronary atherosclerosis, myocardial infarction, and ischemic heart failure determine the unfavorable evolution of the transplanted heart in humans. Objective: Here we tested whether the pathological manifestations of the transplanted heart can be corrected partly by a strategy that implements the use of cardiac progenitor cells from the recipient to repopulate the donor heart with immunocompatible cardiomyocytes and coronary vessels. Methods and Results: A large number of cardiomyocytes and coronary vessels were created in a rather short period of time from the delivery, engraftment, and differentiation of cardiac progenitor cells from the recipient. A proportion of newly formed cardiomyocytes acquired adult characteristics and was integrated structurally and functionally within the transplant. Similarly, the regenerated arteries, arterioles, and capillaries were operative and contributed to the oxygenation of the chimeric myocardium. Attenuation in the extent of acute damage by repopulating cardiomyocytes and vessels decreased significantly the magnitude of myocardial scarring preserving partly the integrity of the donor heart. Conclusions: Our data suggest that tissue regeneration by differentiation of recipient cardiac progenitor cells restored a significant portion of the rejected donor myocardium. Ultimately, immunosuppressive therapy may be only partially required improving quality of life and lifespan of patients with cardiac transplantation. (Circ Res. 2009; 105: 1128-1140.
    corecore