5,579 research outputs found
Modifications of Gait as Predictors of Natural Osteoarthritis Progression in STR/Ort Mice
OBJECTIVE: Osteoarthritis (OA) is a common chronic disease for which disease-modifying therapies are not currently available. Studies to seek new targets for slowing the progress of OA rely on mouse models, but these do not allow for longitudinal monitoring of disease development. This study was undertaken to determine whether gait can be used to measure disease severity in the STR/Ort mouse model of spontaneous OA and whether gait changes are related to OA joint pain. METHODS: Gait was monitored using a treadmill-based video system. Correlations between OA severity and gait at 3 treadmill speeds were assessed in STR/Ort mice. Gait and pain behaviors of STR/Ort mice and control CBA mice were analyzed longitudinally, with monthly assessments. RESULTS: The best speed to identify paw area changes associated with OA severity in STR/Ort mice was found to be 17 cm · seconds(−1). Paw area was modified with age in CBA and STR/Ort mice, but this began earlier in STR/Ort mice and correlated with the onset of OA at 20 weeks of age. In addition, task noncompliance appeared at 20 weeks. Surprisingly, STR/Ort mice did not show any signs of pain with OA development, even when treated with the opioid antagonist naloxone, but did exhibit normal pain behaviors in response to complete Freund's adjuvant–induced arthritis. CONCLUSION: The present results identify an animal model in which OA severity and OA pain can be studied in isolation from one another. The findings suggest that paw area and treadmill noncompliance may be useful tools to longitudinally monitor nonpainful OA development in STR/Ort mice. This will help in providing a noninvasive means of assessing new therapies to slow the progression of OA
Role of Quantum Confinement in Luminescence Efficiency of Group IV Nanostructures
Experimental results obtained previously for the photoluminescence efficiency
(PL) of Ge quantum dots (QDs) are theoretically studied. A
- plot of PL versus QD diameter () resulted in an
identical slope for each Ge QD sample only when . We
identified that above 6.2 nm: due to a changing
effective mass (EM), while below 4.6 nm: due to
electron/ hole confinement. We propose that as the QD size is initially
reduced, the EM is reduced, which increases the Bohr radius and interface
scattering until eventually pure quantum confinement effects dominate at small
Recursion and Path-Integral Approaches to the Analytic Study of the Electronic Properties of
The recursion and path-integral methods are applied to analytically study the
electronic structure of a neutral molecule. We employ a tight-binding
Hamiltonian which considers both the and valence electrons of carbon.
From the recursion method, we obtain closed-form {\it analytic} expressions for
the and eigenvalues and eigenfunctions, including the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) states, and the Green's functions. We also present the local densities
of states around several ring clusters, which can be probed experimentally by
using, for instance, a scanning tunneling microscope. {}From a path-integral
method, identical results for the energy spectrum are also derived. In
addition, the local density of states on one carbon atom is obtained; from this
we can derive the degree of degeneracy of the energy levels.Comment: 19 pages, RevTex, 6 figures upon reques
Electronic structure of the substitutional vacancy in graphene: Density-functional and Green's function studies
We study the electronic structure of graphene with a single substitutional
vacancy using a combination of the density-functional, tight-binding, and
impurity Green's function approaches. Density functional studies are performed
with the all-electron spin-polarized linear augmented plane wave (LAPW) method.
The three dangling bonds adjacent to the vacancy introduce
localized states (V) in the mid-gap region, which split due to the
crystal field and a Jahn-Teller distortion, while the states
introduce a sharp resonance state (V) in the band structure. For a planar
structure, symmetry strictly forbids hybridization between the and the
states, so that these bands are clearly identifiable in the calculated
band structure. As for the magnetic moment of the vacancy, the Hund's-rule
coupling aligns the spins of the four localized V, V, and the V electrons resulting
in a S=1 state, with a magnetic moment of , which is reduced by about
due to the anti-ferromagnetic spin-polarization of the band
itinerant states in the vicinity of the vacancy. This results in the net
magnetic moment of . Using the Lippmann-Schwinger equation, we
reproduce the well-known decay of the localized V wave function
with distance and in addition find an interference term coming from the two
Dirac points, previously unnoticed in the literature. The long-range nature of
the V wave function is a unique feature of the graphene vacancy and we
suggest that this may be one of the reasons for the widely varying relaxed
structures and magnetic moments reported from the supercell band calculations
in the literature.Comment: 24 pages, 15 figures. Accepted for publication in New Journal of
Physic
Quasi-periodic X-ray Flares from the Protostar YLW15
With ASCA, we have detected three X-ray flares from the Class I protostar
YLW15. The flares occurred every ~20 hours and showed an exponential decay with
time constant 30-60 ks. The X-ray spectra are explained by a thin thermal
plasma emission. The plasma temperature shows a fast-rise and slow-decay for
each flare with kT_{peak}~4-6 keV. The emission measure of the plasma shows
this time profile only for the first flare, and remains almost constant during
the second and third flares at the level of the tail of the first flare. The
peak flare luminosities L_{X,peak} were ~5-20 * 10^{31} erg s^{-1}, which are
among the brightest X-ray luminosities observed to date for Class I protostars.
The total energy released in each flare was 3-6*10^{36} ergs. The first flare
is well reproduced by the quasi-static cooling model, which is based on solar
flares, and it suggests that the plasma cools mainly radiatively, confined by a
semi-circular magnetic loop of length ~14 Ro with diameter-to-length ratio
\~0.07. The two subsequent flares were consistent with the reheating of the
same magnetic structure as of the first flare. The large-scale magnetic
structure and the periodicity of the flares imply that the reheating events of
the same magnetic loop originate in an interaction between the star and the
disk due to the differential rotation.Comment: Accepted by ApJ, 9 pages incl. 4 ps figure
Rotation and X-ray emission from protostars
The ASCA satellite has recently detected variable hard X-ray emission from
two Class I protostars in the rho Oph cloud, YLW15 (IRS43) and WL6, with a
characteristic time scale ~20h. In YLW15, the X-ray emission is in the form of
quasi-periodic energetic flares, which we explain in terms of strong magnetic
shearing and reconnection between the central star and the accretion disk. In
WL6, X-ray flaring is rotationally modulated, and appears to be more like the
solar-type magnetic activity ubiquitous on T Tauri stars. We find that YLW15 is
a fast rotator (near break-up), while WL6 rotates with a significantly longer
period. We derive a mass M_\star ~ 2 M_\odot and \simlt 0.4 M_\odot for the
central stars of YLW15 and WL6 respectively. On the long term, the interactions
between the star and the disk results in magnetic braking and angular momentum
loss of the star. On time scales t_{br} ~ a few 10^5 yrs, i.e., of the same
order as the estimated duration of the Class~I protostar stage. Close to the
birthline there must be a mass-rotation relation, t_{br} \simpropto M_\star,
such that stars with M_\star \simgt 1-2 M_\odot are fast rotators, while their
lower-mass counterparts have had the time to spin down. The rapid rotation and
strong star-disk magnetic interactions of YLW15 also naturally explain the
observation of X-ray ``superflares''. In the case of YLW15, and perhaps also of
other protostars, a hot coronal wind (T~10^6 K) may be responsible for the VLA
thermal radio emission. This paper thus proposes the first clues to the
rotation status and evolution of protostars.Comment: 13 pages with 6 figures. To be published in ApJ (April 10, 2000 Part
1 issue
Transmittivity of a Bose-Einstein condensate on a lattice: interference from period doubling and the effect of disorder
We evaluate the particle current flowing in steady state through a
Bose-Einstein condensate subject to a constant force in a quasi-onedimensional
lattice and to attractive interactions from fermionic atoms that are localized
in various configurations inside the lattice wells. The system is treated
within a Bose-Hubbard tight binding model by an out-of-equilibrium Green's
function approach. A new band gap opens up when the lattice period is doubled
by locating the fermions in alternate wells and yields an interference pattern
in the transmittivity on varying the intensity of the driving force. The
positions of the transmittivity minima are determined by matching the period of
Bloch oscillations and the time for tunnelling across the band gap. Massive
disorder in the distribution of the fermions will wash out the interference
pattern, but the same period doubling of the lattice can be experimentally
realized in a four-beam set-up. We report illustrative numerical results for a
mixture of 87Rb and 40K atoms in an optical lattice created by laser beams with
a wavelength of 763 nm.Comment: 13 pages, 5 figure
Iron Fluorescent Line Emission from Young Stellar Objects in the Orion Nebula
We present the result of a systematic search for the iron Kalpha fluorescent
line at 6.4 keV among 1616 X-ray sources detected by ultra-deep Chandra
observations of the Orion Nebula Cluster and the obscured Orion Molecular Cloud
1 population as part of the Chandra Orion Ultra-deep Project (COUP). Seven
sources are identified to have an excess emission at 6.4 keV among 127 control
sample sources with significant counts in the 6.0-9.0 keV band. These seven
sources are young stellar objects (YSOs) characterized by intense flare-like
flux variations, thermal spectra, and near-infrared (NIR) counterparts. The
observed equivalent widths of the line cannot be attributed to the fluorescence
by interstellar or circumstellar matter along the line of sight. The X-ray
spectral fits and NIR colors of the 6.4 keV sources show that these sources
have X-ray absorption of > 1x10^22 cm^(-2) and NIR excess emission, which is
not expected when the fluorescence occurs at the stellar photosphere. We
therefore conclude that the iron fluorescent line of YSOs arises from
reflection off of circumstellar disks, which are irradiated by the hard X-ray
continuum emission of magnetic reconnection flares.Comment: 11 pages, 6 postscript figures, accepted for publication in ApJS.
Corrected typo
- …