5,866 research outputs found

    A selection of maximal elements under non-transitive indifferences

    Get PDF
    In this work we are concerned with maximality issues under intransitivity of the indifference. Our approach relies on the analysis of "undominated maximals" (cf., Peris and Subiza, J Math Psychology 2002). Provided that an agent's binary relation is acyclic, this is a selection of its maximal elements that can always be done when the set of alternatives is finite. In the case of semiorders, proceeding in this way is the same as using Luce's selected maximals. We put forward a sufficient condition for the existence of undominated maximals for interval orders without any cardinality restriction. Its application to certain type of continuous semiorders is very intuitive and accommodates the well-known "sugar example" by Luce

    A selection of maximal elements under non-transitive indifferences

    Get PDF
    In this work we are concerned with maximality issues under intransitivity of the indifference. Our approach relies on the analysis of "undominated maximals" (cf., Peris and Subiza, J Math Psychology 2002). Provided that an agent's binary relation is acyclic, this is a selection of its maximal elements that can always be done when the set of alternatives is finite. In the case of semiorders, proceeding in this way is the same as using Luce's selected maximals. We put forward a sufficient condition for the existence of undominated maximals for interval orders without any cardinality restriction. Its application to certain type of continuous semiorders is very intuitive and accommodates the well-known "sugar example" by Luce.Maximal element; Selection of maximals; Acyclicity; Interval order; Semiorder

    Problems Affecting Labor

    Get PDF
    Much experimental work has been devoted in comparing the folding behavior of proteins sharing the same fold but different sequence. The recent design of proteins displaying very high sequence identities but different 3D structure allows the unique opportunity to address the protein-folding problem from a complementary perspective. Here we explored by ℙ-value analysis the pathways of folding of three different heteromorphic pairs, displaying increasingly high-sequence identity (namely, 30%, 77%, and 88%), but different structures called G A (a 3-α helix fold) and G B (an α/β fold). The analysis, based on 132 site-directed mutants, is fully consistent with the idea that protein topology is committed very early along the pathway of folding. Furthermore, data reveals that when folding approaches a perfect two-state scenario, as in the case of the G A domains, the structural features of the transition state appear very robust to changes in sequence composition. On the other hand, when folding is more complex and multistate, as for the G Bs, there are alternative nuclei or accessible pathways that can be alternatively stabilized by altering the primary structure. The implications of our results in the light of previous work on the folding of different members belonging to the same protein family are discussed

    Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices

    Get PDF
    In this paper we study a model for the heat conduction in a composite having a microscopic structure arranged in a perodic array. We obtain the macroscopic behaviour of the material via an homogenization procedure, providing the equation satisfied by the effective temperature

    Evaluation framework for context-aware speaker recognition in noisy smart living environments

    Get PDF
    The integration of voice control into connected devices is expected to improve the efficiency and comfort of our daily lives. However, the underlying biometric systems often impose constraints on the individual or the environment during interaction (e.g., quiet surroundings). Such constraints have to be surmounted in order to seamlessly recognize individuals. In this paper, we propose an evaluation framework for speaker recognition in noisy smart living environments. To this end, we designed a taxonomy of sounds (e.g., home-related, mechanical) that characterize representative indoor and outdoor environments where speaker recognition is adopted. Then, we devised an approach for off-line simulation of challenging noisy conditions in vocal audios originally collected under controlled environments, by leveraging our taxonomy. Our approach adds a (combination of) sound(s) belonging to the target environment into the current vocal example. Experiments on a large-scale public dataset and two state-of-the-art speaker recognition models show that adding certain background sounds to clean vocal audio leads to a substantial deterioration of recognition performance. In several noisy settings, our findings reveal that a speaker recognition model might end up to make unreliable decisions. Our framework is intended to help system designers evaluate performance deterioration and develop speaker recognition models more robust to smart living environments

    Ghost-arc geochemical anomaly at a spreading ridge caused by supersized flat subduction

    Get PDF
    The Southern Atlantic-Southwest Indian ridges (SASWIR) host mid-ocean ridge basalts with a residual subduction-related geochemical fingerprint (i.e., a ghost-arc signature) of unclear origin. Here, we show through an analysis of plate kinematic reconstructions and seismic tomography models that the SASWIR subduction-modified mantle source formed in the Jurassic close to the Georgia Islands slab (GI) and remained near-stationary in the mantle reference frame. In this analysis, the GI lies far inboard the Jurassic Patagonian-Antarctic Peninsula active margin. This was formerly attributed to a large-scale flat subduction event in the Late Triassic-Early Jurassic. We propose that during this flat slab stage, the subduction-modified mantle areas beneath the Mesozoic active margin and surrounding sutures zones may have been bulldozed inland by >2280 km. After the demise of the flat slab, this mantle anomaly remained near-stationary and was sampled by the Karoo mantle plume 183 Million years (Myr) ago and again since 55 Myr ago by the SASWIR. We refer to this process as asthenospheric anomaly telescoping. This study provides a hitherto unrecognized geodynamic effect of flat subduction, the viability of which we support through numerical modeling.G. M. G. and C. R. N. recognize the support given by CONICET and the funding given by the Universidad Nacional de la Patagonia San Juan Bosco (Grant number: CIUNPAT no. 1399). S. Z. and J. L. acknowledge the funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 777778. S.Z. acknowledges the funding of Project PID2020-113463RB-C32 funded by MCIN/AEI /10.13039/501100011033 and the funding of Generalitat de Catalunya via the 2021 SGR 01049.Peer ReviewedPostprint (published version

    Adiabatic and non-adiabatic phonon dispersion in a Wannier function approach

    Full text link
    We develop a first-principles scheme to calculate adiabatic and non-adiabatic phonon frequencies in the full Brillouin zone. The method relies on the variational properties of a force-constants functional with respect to the first-order perturbation of the electronic charge density and on the localization of the deformation potential in the Wannier function basis. This allows for calculation of phonon dispersion curves free from convergence issues related to Brillouin zone sampling. In addition our approach justify the use of the static screened potential in the calculation of the phonon linewidth due to decay in electron-hole pairs. We apply the method to the calculation of the phonon dispersion and electron-phonon coupling in MgB2_2 and CaC6_6. In both compounds we demonstrate the occurrence of several Kohn anomalies, absent in previous calculations, that are manifest only after careful electron and phonon momentum integration. In MgB2_2, the presence of Kohn anomalies on the E2g_{2g} branches improves the agreement with measured phonon spectra and affects the position of the main peak in the Eliashberg function. In CaC6_6 we show that the non-adiabatic effects on in-plane carbon vibrations are not localized at zone center but are sizable throughout the full Brillouin zone. Our method opens new perspectives in large-scale first-principles calculations of dynamical properties and electron-phonon interaction.Comment: 18 pages, 8 figure
    • …
    corecore