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José Carlos R. Alcantud and Gianni Bosi and Magal̀ı Zuanon

Universidad de Salamanca, University of Trieste, University of
Brescia

4. August 2009

Online at http://mpra.ub.uni-muenchen.de/16601/
MPRA Paper No. 16601, posted 10. August 2009 08:03 UTC

http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/16601/


A selection of maximal elements under

non-transitive indifferences
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Abstract

In this work we are concerned with maximality issues under intransitivity of the
indifference. Our approach relies on the analysis of “undominated maximals” (cf.,
Peris and Subiza [7]). Provided that an agent’s binary relation is acyclic, this is a
selection of its maximal elements that can always be done when the set of alterna-
tives is finite. In the case of semiorders, proceeding in this way is the same as using
Luce’s selected maximals.

We put forward a sufficient condition for the existence of undominated maximals
for interval orders without any cardinality restriction. Its application to certain type
of continuous semiorders is very intuitive and accommodates the well-known “sugar
example” by Luce.

Key words: Maximal element, Selection of maximals, Acyclicity, Interval order,
Semiorder

JEL Classification: D11.

Preprint submitted to Elsevier August 4, 2009



1 Introduction

Even though there are arguments to ensure the existence of maximal elements
for binary relations in very general settings, this concept does not always
explain choice under non-transitive indifference well. Luce [6] argued that in
order to account for certain procedural aspects better, some “selection of max-
imals” helps the researcher. From his Introduction: “... a maximization prin-
ciple is almost always employed which states in effect that a rational being
will respond to any finite difference in utility, however small. It is, of course,
false that people behave in this manner”. After attaching to intransitivities of
the indifference the imperfect response sensitivity to small changes in utility,
he proposed the concept of a semiorder as a way to deal with intransitive
indifferences without giving up transitivity of the strict preference.

In this work we are concerned with maximality considerations under intran-
sitivity of the indifference. It is based on the analysis of “undominated maxi-
mals”, a concept introduced and explored in Peris and Subiza [7]. They estab-
lish two particularly remarkable facts. For one thing, such selection of maxi-
mals can be done when the set of alternatives is finite provided that the binary
relation is acyclic. For another, proceeding in this way is the same as using
Luce’s selected maximals 2 in the case of semiorders.

In light of these two facts it seems interesting to provide conditions for the
existence of undominated maximals without any cardinality restriction. We
put forward a sufficient condition for interval orders, whose application to
certain type of continuous semiorders is very intuitive and accommodates the
well-known “sugar example” by Luce.

In Section 2 we establish our notation and preliminary definitions. Then in
Section 3 we analyse the existence of undominated maximals in the case of
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2 [6, Section 3] states that in terms of a semiorder on a set it is possible to define
a natural weak ordering of the same set. If the semiorder is a weak order then the
induced weak ordering is identical to the given one. Luce’s selected maximals are
the maximal elements of such induced weak ordering, provided they exist. Example
2 below formalizes this construction.
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unrestricted cardinality of the set of alternatives. As an application, a concrete
specification leading to Luce’s analysis of the “sugar example” is provided.
Finally, we investigate the role of the different assumptions in our results.
Section 4 contains some conclusions and remarks.

2 Notation and preliminaries

Let us fix a ground set X of alternatives. Unless otherwise stated, henceforth
� denotes an acyclic relation, i.e., x1 � x2 � ... � xn implies x1 6= xn for all
x1, ..., xn ∈ X. Its lower (resp., upper) contour set associated with x ∈ X is
{z ∈ X : x � z} (resp., {z ∈ X : z � x}). A subset A ⊆ X is a lower (resp.,
upper) set of � when a ∈ A, x ∈ X, and a � x (resp., x � a) implies x ∈ A.

Denote by % the complement of the dual of � (i.e., x % y if and only if y � x
is false), and by ∼ the indifference relation associated with � (i.e., x ∼ y if
and only if both x % y and y % x).

With every acyclic relation � on X we associate the traces �∗ and �∗∗ defined
as follows: for all x, y ∈ X,

x �∗ y ⇔ ∃ξ ∈ X : x � ξ % y,

x �∗∗ y ⇔ ∃η ∈ X : x % η � y.

Therefore, if we denote by %∗ and %∗∗ the respective complements of the
duals of �∗ and �∗∗ we have

x %∗ y ⇔ (y � z ⇒ x � z),

x %∗∗ y ⇔ (z � x⇒ z � y).

We recall that a binary relation � on X is an interval order if it is irreflexive
and the following condition is verified for all x, y, z, w ∈ X:

(x � z) and (y � w)⇒ (x � w) or (y � z).

Further, a binary relation � on X is a semiorder if � is an interval order and
the following condition is verified for all x, y, z, w ∈ X:

(x � y) and (y � z)⇒ (x � w) or (w � z).
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If � is an interval order then �∗ and �∗∗ are weak orders (i.e., asymmetric
and negatively transitive binary relations). If � is a semiorder then the binary
relation �0=�∗ ∪ �∗∗ is a weak order (cf., Fishburn [5], Theorem 2 of Section
2) and therefore we have that x �∗ y implies that x %∗∗ y for all x, y ∈ X.

Using the terminology in Peris and Subiza [7], the weak dominance relation
%D and the strict dominance relation �D associated with an interval order �
on a set X can be defined as follows: for each x, y ∈ X,

x %D y ⇔ x %∗ y and x %∗∗ y,

x �D y ⇔ x %D y and not(y %D x).

We denote by M(X,�) the set of maximal elements relative to � on X, i.e.,
M(X,�) = {x ∈ X : ∀z ∈ X, z � x is false}.

If τ is a topology on X, � is upper semicontinuous if its lower contour sets
are open. From Alcantud [1], we say that (X, τ) is �-upper compact if for each
collection of lower open sets which covers X there exists a finite subcollection
that also covers X.

3 Selection of maximal elements for acyclic relations

The set of Undominated Maximal elements of X is defined as

UM(X,�) = M(X,�) ∩M(X,�D)

It is known that if we restrict ourselves to finite sets, maximal elements do
exist under acyclicity of � (cf., Peris and Subiza [7, Theorem 2]). In Subsec-
tion 3.1 we show that even if we focus on semiorders and impose classical (and
restrictive) conditions in the vein of the Bergstrom-Walker theorem, when the
ground set is infinite the set of undominated maximals may be empty. Then
in Subsection 3.2 we produce general conditions for the existence of undom-
inated maximals on topological spaces with arbitrary cardinality. Subsection
3.3 yields a Corollary with an application to a celebrated analysis by R. D.
Luce.

3.1 Undominated maximals vs. maximal elements

In the case of binary relations on finite sets, the existence of maximal elements
for any subset is equivalent to the acyclicity of the relation. In turn that as-
sumption ensures the existence of undominated maximals for any such subset.
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When we move to infinite sets, maximal elements (and undominated maxi-
mals) may not exist. The literature has provided many additional conditions
under which maximal elements do exist. There are different tendences in this
literature but the most celebrated approach probably is the Bergstrom-Walker
theorem and variations of it. Its basic form states that upper semicontinuous
acyclic relations on compact topological spaces have maximal elements. Ex-
ample 1 below shows that even in the case of semiorders on countable sets,
this specification does not suffice to ensure that undominated maximals exist.

Example 1 Let us fix A = N = {1, 2, 3, ...}. The next expression produces an
upper semicontinuous semiorder with respect to the excluded point topology
associated with {1} on A 3 , which is always compact:

m � n if and only if m is odd, n is even, and m+ 1 > n

Although A has an infinite number of maximal elements (namely, the odd
numbers) there are not undominated maximals because (m+ 2) �D m when
m is odd.

If we adhere to the topological approach in our quest for conditions that
guarantee that undominated maximals do exist then we need to consider other
suitable assumptions. That is the purpose of Subsection 3.2 below.

3.2 Existence of undominated maximals for unrestricted domains

The next Lemma shows that an alternative expression for the set of undomi-
nated maximals can be given under only acyclicity of �.

Lemma 1 Suppose that � is an acyclic relation on X. Then

UM(X,�) = M(M(X,�),�D)

Proof: Along the proof of Peris and Subiza [7, Theorem 2] the inclusion
M(M(X,�),�D) ⊆ UM(X,�) is proved. The fact that every x ∈ UM(X,�)
belongs to M(M(X,�),�D) is immediate. �

Next we present some technical and useful properties that hold in our setting.

Lemma 2 Suppose that � is an acyclic relation on X. Then:

(1) �D⊆�∗ on M(X,�)

3 The open sets are the subsets of A that do not contain 1 plus A
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(2) M(X,�∗) ⊆M(X,�)

Proof: In order to check (1) we notice that the original expression for �D,
namely

x �D y ⇔


x �∗ y and x %∗∗ y (a)

or

x �∗∗ y and x %∗ y (b)

can be simplified because now x �∗∗ y is impossible since y is maximal for �.
This fact rules out (b) and yields the conclusion.

Part (2) is direct because � includes �∗: if x � y then x � y % y due to
irreflexivity of �. �

Remark 1 Besides Lemma 2 (1) we can further note that if � is a semiorder
then �D=�∗ on M(X,�). Thus x, y ∈ UM(X,�) = M(M(X,�),�D) =
M(M(X,�),�∗) now yields x ∼∗ y. Because x ∼∗∗ y is trivial here, we
conclude as in Peris and Subiza [7, Proposition 2] that 4 x ≈ y when x, y ∈
UM(X,�) (but for semiorders only).

For the reader’s convenience we give a proof of a preliminary result stated in
Bridges [3, Proposition 2.1]:

Lemma 3 Suppose that � is an irreflexive relation on X. Then �∗ is asym-
metric if and only if � is an interval order 5 .

Proof: Necessity is trivial because in fact �∗ is a weak order provided that
� is an interval order . For sufficiency assume that x, y, z, w ∈ X satisfy x � z
and y � w. If both x � w and y � z are false we obtain y � w % x and
x � z % y . This means y �∗ x �∗ y, against asymmetry of �∗. �

We are ready to present our main result.

Theorem 1 Suppose that � is an irreflexive relation on X topological space.
If �∗ is asymmetric and upper semicontinuous and X is �∗-upper compact
then � has undominated maximal elements on X.

Proof: The relation � must be an interval order by Lemma 3, therefore it
is acyclic. Proposition 2 in Alcantud [1] ensures that M(X,�∗) is non-empty

4 The reader can check that ≈=∼∗ ∩ ∼∗∗ is Fishburn’s equivalence relation as
defined in [7, page 3].
5 We do not use the fact that these conditions are also equivalent to the asymmetry
of �∗∗, which is stated in Bridges’ Proposition.
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and �∗-upper compact. Because

M(X,�∗) ∩M(X,�) ⊆M(M(X,�),�∗)

we can apply Lemma 2 (2) to deduce ∅ 6= M(X,�∗) ⊆ M(M(X,�),�∗).
Now we use Lemma 2 (1) to produce

∅ 6= M(M(X,�),�∗) ⊆M(M(X,�),�D)

and then Lemma 1 in order to enforce

∅ 6= M(M(X,�),�D) = UM(X,�)

�

3.3 An application to Luce’s maximal elements

Corollary 1 Suppose that � is a continuous interval order with respect to a
given topology on X, and that �∗ =�∗∗. Therefore X has undominated max-
imals as long as it is �∗-upper compact.

Proof: Because �∗ ∪ �∗∗ =�∗ =�∗∗ is a weak order, � is a semiorder.
Besides, �∗ =�∗∗ is continuous because �∗ is lower semicontinuous and �∗∗

is upper semicontinuous (cf., Bosi et al. [2], proof of implication (ii) ⇒ (iii)
in Theorem 3). Now Theorem 1 applies. �

Corollary 1 contains the following widely known specification.

Example 2 Consider the case where X = R with the usual topology, and
take any u : X −→ R continuous and K > 0. Then the continuous semiorder
defined by x � y if and only if u(x) > u(y) + K satisfies �∗ =�∗∗ (cf.,
Campión et al. [4, Theorem 3.5]). Therefore � has undominated maximals on
any compact set. In particular, let u = id and K = 2. It is immediate that
�∗ =�∗∗ =�∗ ∪ �∗∗ is the usual order of the real numbers. Then the compact
set C = {15, 16, 17, 18, 19, 20} has undominated maximal elements. Moreover
they coincide with Luce’s maximals (namely, LM(C,�) = M(C,�∗ ∪ �∗∗) )
because for any semiorder P on a set A the equality LM(A,P ) = UM(A,P )
holds true by Peris and Subiza [7, Theorem 4 (c)]. This is how Luce’s maximal
set selects {20}, the “true” maximal element in Luce’s “sugar example” (v.,
e.g., [7, page 4]).

We proceed to prove that the assumption that �∗ =�∗∗ in Corollary 1 is
not superfluous. As to the role of the �∗-upper compactness assumption, we
address to Example 4.
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Example 3 Take the semiorder given by Example 1 but now endow the ground
set A with the topology specified by the following basis (cf., Willard [8, Section
2.5]):

{{m,m+ 2,m+ 4, ...} : m is odd }
⋃
{{2, 4, 6, ..., n} : n is even }

Then � is continuous and the topology is �∗-upper compact because �∗ is
the weak order given by

... �∗ 5 �∗ 3 �∗ 1, 2 ∼∗ 4 ∼∗ 6 ∼ ..., 1 �∗ 2

thus the only lower (with respect to �∗) open set that contains 1 is A = N.
Also, because �∗∗ is the weak order given by

1 ∼∗∗ 3 ∼∗∗ 5 ∼ ..., ... �∗∗ 6 �∗∗ 4 �∗∗ 2, 1 �∗∗ n for each even n

it is apparent that �∗ 6=�∗∗.

3.4 On the assumptions of Theorem 1

Theorem 1 shows that an adequate relationship between the binary relation
and the topology on X produces the desired conclusion. Examples 4 and 5
below show that in the precise combination of properties that we have pro-
posed (upper semicontinuity and upper compactness of the topology, both
with respect to �∗) neither of them is superfluous.

Example 4 Consider B = [0, 1) ⊆ R in Example 2. Then its usual topology
is not �∗-upper compact, and � has not even maximal elements on B.

Therefore the �∗-upper compactness assumption is not superfluous in Theo-
rem 1. The same is true for Corollary 1.

Example 5 Consider D = [0,+∞) ⊆ R in Example 2. If we endow it with the
excluded point topology associated with 0, then �∗ is not upper semicontinuous.
Although D is �∗-upper compact, � has not even maximal elements on D.

Therefore upper semicontinuity of �∗ is not superfluous in Theorem 1.

4 Concluding remarks

In trying to fill the gap about lack of general conditions for existence of certain
selections of maximals, we have focused on at least acyclic relations because
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they are the natural setting for maximality purposes. The usual conditions
ensuring that maximal elements exist (upper semicontinuity with respect to
compact topologies) do not even permit to guarantee that a maximal is un-
dominated when the relation is a semiorder. The characterization of undom-
inated maximality given by Lemma 1 seems to point at making assumptions
on the strict dominance relation, because useful topological properties of the
set of maximal elements are known (as recalled along the proof of Theorem 1).
We have explored an intuitive approach to this possibility, based on making
assumptions on a trace of the original relation instead 6 . Because the struc-
ture of interval orders is very rich and it is related to that of their traces,
our proposal favours an especially intuitive specification for a case where the
relation is in the class of semiorders (cf., Corollary 1). In light of Remark 1 we
can assure that assumptions on the strict dominance relation are being made
in such case. As a consequence, we deduce the existence of Luce’s maximal
elements in settings like the highly cited “sugar example”.
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