59 research outputs found

    Early development of the malleus and incus in humans.

    Get PDF
    It is widely accepted by developmental biologists that the malleus and incus of the mammalian middle ear are first pharyngeal arch derivatives, a contention based originally on classical embryology that has now been backed up by molecular evidence from rodent models. However, it has been claimed in several studies of human ossicular development that the manubrium of the malleus and long process of the incus are actually derived from the second arch. This 'dual-arch' interpretation is commonly presented in otolaryngology textbooks, and it has been used by clinicians to explain the aetiology of certain congenital abnormalities of the human middle ear. In order to re-examine the origins of the human malleus and incus, we made three-dimensional reconstructions of the pharyngeal region of human embryos from 7 to 28 mm crown-rump length, based on serial histological sections from the Boyd Collection. We considered the positions of the developing ossicles relative to the pharyngeal pouches and clefts, and the facial and chorda tympani nerves. Confirming observations from previous studies, the primary union between first pharyngeal pouch and first cleft found in our youngest specimens was later lost, the external meatus developing rostroventral to this position. The mesenchyme of the first and second arches in these early embryos seemed to be continuous, but the boundaries of the developing ossicles proved to be very hard to determine at this stage. When first distinguishable, the indications were that both the manubrium of the malleus and the long process of the incus were emerging within the first pharyngeal arch. We therefore conclude that the histological evidence, on balance, favours the 'classical' notion that the human malleus and incus are first-arch structures. The embryological basis of congenital ossicular abnormalities should be reconsidered in this light.This is the author accepted manuscript. The final version is available from Wiley via https://doi.org/10.1111/joa.1252

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System

    Get PDF
    The global agriculture, aquaculture, fishing and forestry (AAFF) energy system is subject to three unsustainable trends: (1) the approaching biophysical limits of AAFF; (2) the role of AAFF as a driver of environmental degradation; and (3) the long-term declining energy efficiency of AAFF due to growing dependence on fossil fuels. In response, we conduct a net energy analysis for the period 1971–2017 and review existing studies to investigate the global AAFF energy system and its vulnerability to the three unsustainable trends from an energetic perspective. We estimate the global AAFF system represents 27.9% of societies energy supply in 2017, with food energy representing 20.8% of societies total energy supply. We find that the net energy-return-on-investment (net EROI) of global AAFF increased from 2.87:1 in 1971 to 4.05:1 in 2017. We suggest that rising net EROI values are being fuelled in part by ‘depleting natures accumulated energy stocks’. We also find that the net energy balance of AAFF increased by 130% in this period, with at the same time a decrease in both the proportion of rural residents and also the proportion of the total population working in AAFF—which decreased from 19.8 to 10.3%. However, this comes at the cost of growing fossil fuel dependency which increased from 43.6 to 62.2%. Given the increasing probability of near-term fossil fuel scarcity, the growing impacts of climate change and environmental degradation, and the approaching biophysical limits of global AAFF, ‘Odum’s hoax’ is likely soon to be revealed

    NMR Metabolomics Protocols for Drug Discovery

    Get PDF
    Drug discovery is an extremely difficult and challenging endeavor with a very high failure rate. The task of identifying a drug that is safe, selective and effective is a daunting proposition because disease biology is complex and highly variable across patients. Metabolomics enables the discovery of disease biomarkers, which provides insights into the molecular and metabolic basis of disease and may be used to assess treatment prognosis and outcome. In this regard, metabolomics has evolved to become an important component of the drug discovery process to resolve efficacy and toxicity issues, and as a tool for precision medicine. A detailed description of an experimental protocol is presented that outlines the application of NMR metabolomics to the drug discovery pipeline. This includes: (1) target identification by understanding the metabolic dysregulation in diseases, (2) predicting the mechanism of action of newly discovered or existing drug therapies, (3) and using metabolomics to screen a chemical lead to assess biological activity. Unlike other OMICS approaches, the metabolome is “fragile”, and may be negatively impacted by improper sample collection, storage and extraction procedures. Similarly, biologically-irrelevant conclusions may result from incorrect data collection, pre-processing or processing procedures, or the erroneous use of univariate and multivariate statistical methods. These critical concerns are also addressed in the protocol
    corecore