7 research outputs found

    Additional value of screening for minor genes and copy number variants in hypertrophic cardiomyopathy

    Get PDF
    Introduction: Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited heart disease. Next-generation sequencing (NGS) is the preferred genetic test, but the diagnostic value of screening for minor and candidate genes, and the role of copy number variants (CNVs) deserves further evaluation. Methods: Three hundred and eighty-seven consecutive unrelated patients with HCM were screened for genetic variants in the 5 most frequent genes (MYBPC3, MYH7, TNNT2, TNNI3 and TPM1) using Sanger sequencing (N = 84) or NGS (N = 303). In the NGS cohort we analyzed 20 additional minor or candidate genes, and applied a proprietary bioinformatics algorithm for detecting CNVs. Additionally, the rate and classification of TTN variants in HCM were compared with 427 patients without structural heart disease. Results: The percentage of patients with pathogenic/likely pathogenic (P/LP) variants in the main genes was 33.3%, without significant differences between the Sanger sequencing and NGS cohorts. The screening for 20 additional genes revealed LP variants in ACTC1, MYL2, MYL3, TNNC1, GLA and PRKAG2 in 12 patients. This approach resulted in more inconclusive tests (36.0% vs. 9.6%, p<0.001), mostly due to variants of unknown significance (VUS) in TTN. The detection rate of rare variants in TTN was not significantly different to that found in the group of patients without structural heart disease. In the NGS cohort, 4 patients (1.3%) had pathogenic CNVs: 2 deletions in MYBPC3 and 2 deletions involving the complete coding region of PLN. Conclusions: A small percentage of HCM cases without point mutations in the 5 main genes are explained by P/LP variants in minor or candidate genes and CNVs. Screening for variants in TTN in HCM patients drastically increases the number of inconclusive tests, and shows a rate of VUS that is similar to patients without structural heart disease, suggesting that this gene should not be analyzed for clinical purposes in HCM

    Application of biofilm film array blood colture identification panel for rapid identification of the causative agents of ventilator associated pneumonia

    No full text
    Objective: To evaluate the ability of the BioFire FilmArray Blood Culture Identification (BCID) panel to rapidly detect pathogens producing late-onset ventilator-associated pneumonia (VAP), a severe infection often produced by Gram-negative bacteria. These microorganisms are frequently multidrug resistant and typically require broad-spectrum empiric treatment. Methods: In the context of an international multicentre clinical trial (MagicBullet), respiratory samples were collected at the time of suspicion of VAP from 165 patients in 32 participating hospitals in Spain, Greece and Italy. Microorganisms were identified using the BCID panel and compared with results obtained by conventional microbiologic techniques. Results: Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae were the most commonly identified species, representing 54.7% (70/128) of microorganisms. The BCID panel showed high global specificity (98.1%; 95% confidence interval, 96–100) and negative predictive values (96.6%) and a global sensitivity and positive predictive value of 78.6% (95% confidence interval, 70–88) and 87.3%, respectively, for these microorganisms. Importantly, the BCID panel provided results in only 1 hour directly from respiratory samples with minimal sample processing times. Conclusions: The BCID panel may have clinical utility in rapidly ruling out microorganisms causing VAP, specifically multidrug-resistant Gram-negative species. This could facilitate the optimization of empiric treatment

    Application of BioFire FilmArray Blood Culture Identification panel for rapid identification of the causative agents of ventilator-associated pneumonia

    No full text
    Objective: To evaluate the ability of the BioFire FilmArray Blood Culture Identification (BCID) panel to rapidly detect pathogens producing late-onset ventilator-associated pneumonia (VAP), a severe infection often produced by Gram-negative bacteria. These microorganisms are frequently multidrug resistant and typically require broad-spectrum empiric treatment. Methods: In the context of an international multicentre clinical trial (MagicBullet), respiratory samples were collected at the time of suspicion of VAP from 165 patients in 32 participating hospitals in Spain, Greece and Italy. Microorganisms were identified using the BCID panel and compared with results obtained by conventional microbiologic techniques. Results: Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae were the most commonly identified species, representing 54.7% (70/128) of microorganisms. The BCID panel showed high global specificity (98.1%; 95% confidence interval, 96–100) and negative predictive values (96.6%) and a global sensitivity and positive predictive value of 78.6% (95% confidence interval, 70–88) and 87.3%, respectively, for these microorganisms. Importantly, the BCID panel provided results in only 1 hour directly from respiratory samples with minimal sample processing times. Conclusions: The BCID panel may have clinical utility in rapidly ruling out microorganisms causing VAP, specifically multidrug-resistant Gram-negative species. This could facilitate the optimization of empiric treatment. © 2018 European Society of Clinical Microbiology and Infectious Disease

    Weaning from mechanical ventilation in intensive care units across 50 countries (WEAN SAFE): a multicentre, prospective, observational cohort study

    No full text
    International audienceBackground: Current management practices and outcomes in weaning from invasive mechanical ventilation are poorly understood. We aimed to describe the epidemiology, management, timings, risk for failure, and outcomes of weaning in patients requiring at least 2 days of invasive mechanical ventilation. Methods: WEAN SAFE was an international, multicentre, prospective, observational cohort study done in 481 intensive care units in 50 countries. Eligible participants were older than 16 years, admitted to a participating intensive care unit, and receiving mechanical ventilation for 2 calendar days or longer. We defined weaning initiation as the first attempt to separate a patient from the ventilator, successful weaning as no reintubation or death within 7 days of extubation, and weaning eligibility criteria based on positive end-expiratory pressure, fractional concentration of oxygen in inspired air, and vasopressors. The primary outcome was the proportion of patients successfully weaned at 90 days. Key secondary outcomes included weaning duration, timing of weaning events, factors associated with weaning delay and weaning failure, and hospital outcomes. This study is registered with ClinicalTrials.gov, NCT03255109. Findings: Between Oct 4, 2017, and June 25, 2018, 10 232 patients were screened for eligibility, of whom 5869 were enrolled. 4523 (77·1%) patients underwent at least one separation attempt and 3817 (65·0%) patients were successfully weaned from ventilation at day 90. 237 (4·0%) patients were transferred before any separation attempt, 153 (2·6%) were transferred after at least one separation attempt and not successfully weaned, and 1662 (28·3%) died while invasively ventilated. The median time from fulfilling weaning eligibility criteria to first separation attempt was 1 day (IQR 0–4), and 1013 (22·4%) patients had a delay in initiating first separation of 5 or more days. Of the 4523 (77·1%) patients with separation attempts, 2927 (64·7%) had a short wean (≤1 day), 457 (10·1%) had intermediate weaning (2–6 days), 433 (9·6%) required prolonged weaning (≥7 days), and 706 (15·6%) had weaning failure. Higher sedation scores were independently associated with delayed initiation of weaning. Delayed initiation of weaning and higher sedation scores were independently associated with weaning failure. 1742 (31·8%) of 5479 patients died in the intensive care unit and 2095 (38·3%) of 5465 patients died in hospital. Interpretation: In critically ill patients receiving at least 2 days of invasive mechanical ventilation, only 65% were weaned at 90 days. A better understanding of factors that delay the weaning process, such as delays in weaning initiation or excessive sedation levels, might improve weaning success rates. Funding: European Society of Intensive Care Medicine, European Respiratory Society

    ESICM LIVES 2016: part two : Milan, Italy. 1-5 October 2016.

    Get PDF
    Meeting abstrac
    corecore