13,455 research outputs found

    Application of PN and avalanche silicon photodiodes to low-level optical

    Get PDF
    New approaches to the discovery of other planetary systems require very sensitive and stable detection techniques in order to succeed. Two methods in particular, the astrometric and the photometric methods, require this. To begin understanding the problems and limitations of solid state detectors regarding this application, preliminary experiments were performed at the National Bureau of Standards and a low light level detector characterization facility was built. This facility is briefly described, and the results of tests conducted in it are outlined. A breadboard photometer that was used to obtain stellar brightness ratio precision data is described. The design principles of PN and avalanche silicon photodiodes based on low light level measuring circuits are discussed

    Dynamics of high-bypass-engine thrust reversal using a variable-pitch fan

    Get PDF
    The test program demonstrated that successful and rapid forward-to reverse-thrust transients can be performed without any significant engine operational limitations for fan blade pitch changes through either feather pitch or flat pitch. For through-feather-pitch operation with a flight inlet, fan stall problems were encountered, and a fan blade overshoot technique was used to establish reverse thrust

    Gamma-Ray Burster Counterparts: HST Blue and Ultraviolet Data

    Get PDF
    The surest solution of the Gamma Ray Burst (GRB) mystery is to find an unambiguous low-energy quiescent counterpart. However, to date no reasonable candidates have been identified in the x-ray, optical, infrared, or radio ranges. The Hubble Space Telescope (HST) has now allowed for the first deep ultraviolet searches for quiescent counterparts. This paper reports on multiepoch ultraviolet searches of five GRB positions with HST. We found no sources with significant ultraviolet excesses, variability, parallax, or proper motion in any of the burst error regions. In particular, we see no sources similar to that proposed as a counterpart to the GRB970228. While this negative result is disappointing, it still has good utility for its strict limits on the no-host-galaxy problem in cosmological models of GRBs. For most cosmological models (with peak luminosity 6X10^50 erg/s), the absolute B magnitude of any possible host galaxy must be fainter than -15.5 to -17.4. These smallest boxes for some of the brightest bursts provide the most critical test, and our limits are a severe problem for all published cosmological burst models.Comment: 15 pages, 2 ps figures, accepted for publication in the Astrophysical Journa

    Energetics of positron states trapped at vacancies in solids

    Get PDF
    We report a computational first-principles study of positron trapping at vacancy defects in metals and semiconductors. The main emphasis is on the energetics of the trapping process including the interplay between the positron state and the defect's ionic structure and on the ensuing annihilation characteristics of the trapped state. For vacancies in covalent semiconductors the ion relaxation is a crucial part of the positron trapping process enabling the localization of the positron state. However, positron trapping does not strongly affect the characteristic features of the electronic structure, e.g., the ionization levels change only moderately. Also in the case of metal vacancies the positron-induced ion relaxation has a noticeable effect on the calculated positron lifetime and momentum distribution of annihilating electron-positron pairs.Comment: Submitted to Physical Review B on 17 April 2007. Revised version submitted on 6 July 200

    Analysis of electron-positron momentum spectra of metallic alloys as supported by first-principles calculations

    Get PDF
    Electron-positron momentum distributions measured by the coincidence Doppler broadening method can be used in the chemical analysis of the annihilation environment, typically a vacancy-impurity complex in a solid. In the present work, we study possibilities for a quantitative analysis, i.e., for distinguishing the average numbers of different atomic species around the defect. First-principles electronic structure calculations self-consistently determining electron and positron densities and ion positions are performed for vacancy-solute complexes in Al-Cu, Al-Mg-Cu, and Al-Mg-Cu-Ag alloys. The ensuing simulated coincidence Doppler broadening spectra are compared with measured ones for defect identification. A linear fitting procedure, which uses the spectra for positrons trapped at vacancies in pure constituent metals as components, has previously been employed to find the relative percentages of different atomic species around the vacancy [A. Somoza et al. Phys. Rev. B 65, 094107 (2002)]. We test the reliability of the procedure by the help of first-principles results for vacancy-solute complexes and vacancies in constituent metals.Comment: Submitted to Physical Review B on September 19 2006. Revised version submitted on November 8 2006. Published on February 14 200

    Modeling the momentum distributions of annihilating electron-positron pairs in solids

    Get PDF
    Measuring the Doppler broadening of the positron annihilation radiation or the angular correlation between the two annihilation gamma quanta reflects the momentum distribution of electrons seen by positrons in the material.Vacancy-type defects in solids localize positrons and the measured spectra are sensitive to the detailed chemical and geometric environments of the defects. However, the measured information is indirect and when using it in defect identification comparisons with theoretically predicted spectra is indispensable. In this article we present a computational scheme for calculating momentum distributions of electron-positron pairs annihilating in solids. Valence electron states and their interaction with ion cores are described using the all-electron projector augmented-wave method, and atomic orbitals are used to describe the core states. We apply our numerical scheme to selected systems and compare three different enhancement (electron-positron correlation) schemes previously used in the calculation of momentum distributions of annihilating electron-positron pairs within the density-functional theory. We show that the use of a state-dependent enhancement scheme leads to better results than a position-dependent enhancement factor in the case of ratios of Doppler spectra between different systems. Further, we demonstrate the applicability of our scheme for studying vacancy-type defects in metals and semiconductors. Especially we study the effect of forces due to a positron localized at a vacancy-type defect on the ionic relaxations.Comment: Submitted to Physical Review B on September 1 2005. Revised manuscript submitted on November 14 200
    corecore