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Modeling the momentum distributions of annihilating electron-positron pairs in solids
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ULaboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FI-02015 HUT, Finland

Division of X-Ray Physics, Department of Physical Sciences, P.O. Box 64, FI-00014 University of Helsinki, Finland

(Received 1 September 2005; revised manuscript received 14 November 2005; published 6 January 2006)

Measuring the Doppler broadening of the positron annihilation radiation or the angular correlation between
the two annihilation gamma quanta reflects the momentum distribution of electrons seen by positrons in the
material. Vacancy-type defects in solids localize positrons and the measured spectra are sensitive to the detailed
chemical and geometric environments of the defects. However, the measured information is indirect and when
using it in defect identification comparisons with theoretically predicted spectra is indispensable. In this article
we present a computational scheme for calculating momentum distributions of electron-positron pairs annihi-
lating in solids. Valence electron states and their interaction with ion cores are described using the all-electron
projector augmented-wave method, and atomic orbitals are used to describe the core states. We apply our
numerical scheme to selected systems and compare three different enhancement (electron-positron correlation)
schemes previously used in the calculation of momentum distributions of annihilating electron-positron pairs
within the density-functional theory. We show that the use of a state-dependent enhancement scheme leads to
better results than a position-dependent enhancement factor in the case of ratios of Doppler spectra between
different systems. Further, we demonstrate the applicability of our scheme for studying vacancy-type defects in
metals and semiconductors. Especially we study the effect of forces due to a positron localized at a vacancy-

type defect on the ionic relaxations.

DOI: 10.1103/PhysRevB.73.035103

I. INTRODUCTION

Positron annihilation spectroscopy! is an experimental
method for studying electronic structures of materials. In
comparison with other techniques to measure electron mo-
mentum densities such as (e,2e) spectroscopy? or Compton
scattering® (to which we have already applied the same all-
electron method as used in this work*) positron annihilation
is characterized with the strong sensitivity to the vacancy-
type defects, which makes it a method widely suitable in
materials science and materials technology studies. In the
crystal lattice positrons get trapped at possibly existing
vacancy-type defects. By measuring positron lifetimes and
momentum distributions of annihilating electron-positron
pairs (angular correlation or Doppler broadening measure-
ments of annihilation radiation) one obtains information
about the open volumes and the chemical environments of
the defects.

A successful use of positron annihilation measurements
(in defect identification) calls for accompanying theoretical
and computational work resulting in simulated annihilation
characteristics to be compared with the measured ones (for a
review see Ref. 5). In this paper we present a computational
scheme based on the zero-positron-density (n, — 0) limit of
the two-component density-functional theory® (TCDFT). We
describe the valence electron states in materials using the
projector augmented-wave (PAW) method,” which we have
already used to simulate the electron momentum distribu-
tions measured by Compton scattering.* In the PAW method
the core states are treated in the frozen-core approximation
and described using atomic wave functions.® In this work,
the positron state is solved in the real space using a Rayleigh
quotient multigrid (RQMG) solver.® Our scheme gives good
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results when compared to experiments for delocalized posi-
tron states, for which the n, — 0 limit of the TCDFT is exact,
as well as for positrons localized at vacancy-type defects.
The methods previously used in self-consistent calcula-
tions of electronic structures and wave functions for determi-
nation of momentum distributions of annihilating valence-
electron-positron  pairs include, for example, the
pseudopotential method,'®'* the full-potential linearized-
augmented-plane-wave (FLAPW) method,'>'7 the linear
muffin-tin orbital (LMTO) method'® and localized basis set
schemes.!® Each of these methods has its own advantages
and flaws. The FLAPW method, although being accurate, is
computationally heavy and has a basis set that makes the
momentum density calculations technically complicated. The
pseudopotential method is efficient and simple to use in the
momentum distribution calculations. The drawback is that
one completely loses the information on the high-momentum
Fourier components of the valence wave functions because
soft pseudo wave functions are used in the calculation. The
LMTO method has presentation problems in the interstitial
regions, which renders it difficult to describe open structures
such as vacancy-type defects and systems with low symme-
try with it. The PAW method, in contrast, is as efficient as the
ultrasoft pseudopotential method.?® It can flexibly be used
for the study of defects in solids including structural relax-
ation. The plane-wave representation of the pseudo wave
functions makes things simple because plane-waves are
eigenfunctions of the momentum. Moreover, the calculation
of the PAW momentum density* is straightforward because
the plane-waves extend also to the augmentation regions as
opposed to the (L)APW method. Ishibashi has already ap-
plied the PAW method to the calculation of coincidence Dop-
pler spectra for bulk materials,>' and Uenodo et al. have used
the same code to study vacancy-type defects in SiGe.?* Pre-
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viously, we have used the PAW scheme (without taking into
account the effect of the positron-induced forces) to study
vacancy-dopant complexes in highly Sb doped Si,”* mono-
vacancy in Al>* and to show that one can experimentally
distinguish Ga vacancies (V,) from V,-Oy pairs in GaN.?

Many works, in which the interpretation of the results is
based on the comparison between measured and simulated
annihilation characteristics, have been published during the
recent years. Therefore, a systematic study of the perfor-
mance of different schemes and approximation is of utmost
importance. Using the PAW method to describe the valence
electrons and atomic orbitals for core electrons we test three
different schemes and approximations to calculate momen-
tum distributions of annihilating electron-positron pairs.

For the description of the many-body effects in the calcu-
lation of momentum distributions of annihilating electron-
positron pairs we choose finally the so-called state-dependent
scheme® and for annihilation rates within the state-dependent
scheme the local-density approximation (LDA) enhancement
factor parametrized by Boronski and Nieminen.® We show
that use of the commonly used position-dependent enhance-
ment factor leads to unphysical oscillations at high momenta
when one considers ratios of Doppler spectra between two
different materials. In the same way we compare the
Boronski-Nieminen (BN) LDA to the generalized-gradient
approximation (GGA) by Barbiellini et al.?®?’” Our results
show that the BN-LDA describes the ratios more accurately
compared with the experiment than the GGA. We also show
that the ratios can be compared with the experiment reliably
although the LDA enhancement overestimates the high-
momentum region of the Doppler spectra arising from the
annihilation with core electrons. There are no test systems
solved theoretically (e.g., by the quantum Monte Carlo
method) exactly enough to compare with.

When studying annihilation of positrons trapped at vacan-
cies and comparing the results with experiments it is impor-
tant to consider the effects of forces due to the localized
positron on the ionic relaxation of the vacancy. The effects
on calculated positron lifetimes and Doppler spectra are non-
negligible. We study selected monovacancies in metals and
semiconductors by including also the effects of the forces
due to the localized positron.

The structure of the paper is as follows. In Sec. Il we
describe the computational method used. Section III presents
results for bulk systems and Sec. IV selected results for va-
cancies in metals and semiconductors. Finally, we summa-
rize our results and present conclusions in Sec. V.

II. THEORY AND COMPUTATIONAL METHODS
A. Calculation of the positron states

In our scheme we first calculate the self-consistent elec-
tronic structure of the system without the influence of the
positron. Then we solve the positron state in the potential

Vi(r) = ¢(r) + Veor(n_(r)), (1)

where ¢(r) is the Coulomb potential due to electrons and
nuclei, n_(r) the electron density, and V. (n_(r)) is the n,
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—0 limit of the electron-positron correlation potential.
Above, the self-interaction correction is explicitly made, i.e.,
since we are interested in the case of only one positron in the
system, its self-direct Coulomb energy should exactly cancel
its exchange-correlation energy. The calculation of the posi-
tron state is non-self-consistent because the effective poten-
tial for the positron [Eq. (1)] does not depend on the positron
density.

The scheme described above is for a delocalized positron
the exact n, — 0 limit of the TCDFT but it has been proven
appropriate in practice also in the case of localized positron
states. In this connection it is often referred to as the “con-
ventional scheme™ (CS). The approximation can be justified
by considering the positron and its screening cloud as a neu-
tral quasiparticle, which does not affect the average electron
density. One of the difficulties in a full TCDFT calculation is
that the electron-positron correlation functionals are poorly
known at finite positron densities. The n,— 0 limit used in
the CS is known better.?®

The thermalized positron in the lattice is in the k=0 state.
When studying bulk systems we calculate the positron wave
function at the I point (k=0). In the case of positrons local-
ized at vacancies the energy eigenvalue corresponding to an
isolated vacancy is broadened due to the supercell approxi-
mation to a narrow band of energies. We integrate over the
lowest lying positron band by calculating the positron wave
function both at the I" point and at the Brillouin zone bound-
ary point L and using the average of the respective results.>’

B. Annihilation rate models

The positron lifetime 7 is the inverse of the annihilation
rate N which in a given system is proportional to the overlap
of the electron and positron densities

A= lr = mfc J drn_(r)n,(r)g(n_(r),n.(r)). (2)

Above, r, is the classical electron radius and ¢ the speed of
light. The enhancement factor g(n_(r),n.(r)) (the contact
density or the electron-positron pair correlation function
evaluated at the positron) takes into account the increase in
the annihilation due to the screening cloud of electrons
around the positron. [The corresponding result obtained by
omitting this factor is called the independent-particle model
(IPM) annihilation rate.] In the TCDFT and within the LDA
g is written as a function of both the local electron and pos-
itron densities. In the CS n,— 0 limit of the enhancement
factor, denoted by y(n_(r)), is used. Also Gilgien et al.!
used the n, — 0 limit of the enhancement factor in their cal-
culations but they calculated the positron density self-
consistently within the TCDFT. This scheme has been shown
to lead to rather localized positron states and too low core
electron annihilation rates in comparison with experiments.'?

The enhancement factor in the Boronski-Nieminen two-
component formalism® is based on the results of the many-
body calculations by Lantto.>® Gilgien et al.'' and Barbiellini
et al.”®*" have used the n, — 0 limit parametrizations consis-
tent with the correlation energy results of Arponen and
Pajanne.?
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The LDA systematically underestimates positron lifetimes
in materials because it overestimates the annihilation with
core electrons for which the correlation effects are less
important.?®?” Therefore, Barbiellini et al’®?’ have pre-
sented a gradient-corrected scheme in which the enhance-
ment factor 7y is interpolated between the LDA (y=1vpa,
zero gradient) and the IPM values (y= 1, infinite gradient) as
a function of the charge density gradient Vn_. Effectively, the
interpolation means that the annihilation with valence elec-
trons in the interstitial region is described using the LDA but
when the density gradient is high (as near nuclei where the
rapid oscillations of core and valence wave functions take
place) the enhancement factor decreases and approaches the
IPM limit (y=1). The interpolation form contains one semi-
empirical parameter. The value a=0.22 has been found to
give with the Arponen-Pajanne enhancement lifetimes in
good agreement with the experiment.?>?” One must note that
also the correlation potential for the positron is gradient cor-
rected in the scheme by Barbiellini er al. However, the dif-
ferent enhancement factors cause directly most of the differ-
ences compared to the BN-LDA. The LDA parametrization
of the correlation potential is the same in both schemes.

C. Schemes for the calculation of momentum distributions of
annihilating electron-positron pairs

The IPM formula for the momentum distribution of anni-
hilating electron-positron pairs is written as

2

, 3)

p(p) = mric, f dre™™ i, (r) ,(r)
j

where ¢,(r) and ¢;(r) are wave functions of the positron and
the electron on orbital j, respectively. The summation goes
over the occupied electron states. The IPM is often used
because it gives, in contrast to the annihilation rate, a rather
good qualitative correspondence (shape of the momentum
distribution) with experiments. A common way to take into
account the electron-positron correlation effects is to intro-
duce in the IPM exPression the position-dependent LDA en-
hancement factor \y(n_(r)),!

2
—ipr Fr (v))
p(p) = i J dre” i (r) g (r)Vy(n_(r)) | . (4)
J

We call this the state-independent LDA scheme. Equation (4)
is, at least in a homogeneous system, consistent with the total
annihilation rate N of Eq. (2). Namely, one should obtain A
by integrating over the momentum

x=fdmxm. 5)

The state-independent LDA scheme is motivated by the en-
hancement factor of the contact density, but it is not obvious
how the screening really modifies the (electron) wave func-
tion. One can consider the position-dependent enhancement
factor \/y(n_(r)) as a factor describing the distortion of the
two-body wave function ¢, (r)#;(r) (where both the electron
and the positron reside at the same point) due to the short-
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range electron-positron correlation. What is problematic is
that the two-body wave function is distorted everywhere at
the instant of the annihilation although the screening is a
local phenomenon. This causes the correlation effects to be
overestimated in the state-independent LDA scheme.
In the so-called state-dependent scheme® a constant
electron-state-dependent enhancement factor 07 is used, i.e.,
2
fww“mM%m . ®

p(p) = mrc 2 v,
J
The enhancement factor is written as y;=\;/ )\;P M where A j

is the annihilation rate of the state j within the LDA or the
GGA,

)\j='n'r§cfdry(n_(r))n+(r)nj(r), (7)
and A'™ is the annihilation rate within the IPM (y=1).
Above, n;(r)=|y;(r)|* is the electron density of the state j. In
the state-dependent scheme the momentum density of a
given (electron on a certain orbital) annihilating electron-
positron pair is (apart from the factor ;) the same as in the
IPM, i.e., the enhancement, which in a sense is averaged
over the electron-positron pair, affects only the annihilation
rate A; not the shape of the momentum distribution of the
orbital j. Equation (5) is again satisfied. The problems related
to the state-independent LDA scheme are avoided because
the enhancement factor affects only the probability of anni-
hilation of the positron with each electron state.

D. Projector augmented-wave method

1. Wave functions in the projector-augmented wave method

We use the projector augmented-wave (PAW) method’ to
describe the valence electron wave functions in solids. The
PAW method is a full-potential all-electron method related
both to the pseudopotential method and to the linearized
augmented-plane-wave method (LAPW). It is based on a lin-
ear transformation between all-electron (AE) valence wave
functions |¥) and soft pseudo (PS) valence wave functions

|\ff>. The transformation can be written as (for details see
Ref. 7)

|q’> = |\I~’> + E (|¢i> - |$z>)<ﬁz|\ﬁ>’ (8)

where |¢,) and |$,;) are AE and PS partial waves localized
around each nucleus and (p;| are soft, localized projector
functions probing the local character of the PS wave function

|\I~’) Index i stands for the site index R, the angular momen-
tum indices (/,m) and an additional index k referring to the
reference energy gy,;. The solution of the self-consistent elec-
tronic structure for a given solid system means the solution
of the PS wave functions. They are represented by plane-
wave expansions in the Vienna ab initio Simulation
Package®>3* (VASP) which we are using. The construction of
the AE wave functions in the PAW method is described in
detail in Ref. 4. The AE valence wave functions are orthogo-
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nal to the core states treated within the frozen-core approxi-
mation (free atom wave functions are used).

When calculating momentum distributions of annihilating
electron-positron pairs, we construct the AE wave functions
|W) according to Eq. (8) in the Fourier space and then Fou-
rier transform them to the real space. In the case of positrons
localized at defects, the summation over R can be limited
only to the atoms surrounding the defect. The positron state
is solved in the real space. Then the products of the positron
and electron wave functions are calculated and Fourier trans-
formed [see Eq. (6)]. As a result we have a three-dimensional
momentum distribution on the reciprocal lattice of the super-
lattice. Using a dense k-point mesh for electron wave func-
tions we decrease the lattice constant in order to increase the
momentum resolution and to get a converged result. Then, by
integrating over the planes perpendicular to the chosen mo-
mentum distribution the Doppler spectrum is obtained with a
sufficient resolution.

It is sufficient to use a typical value of about 250—-400 eV
for the kinetic energy cutoff of the plane-wave expansions
when calculating the PS wave functions for the determina-
tion of the momentum distribution. The momentum compo-
nents of the partial waves in Eq. (8) can be taken into ac-
count up to an arbitrary value p,,,.. We have found that the
value p,,,,=70X 1073 myc is enough to guarantee that the
Doppler spectrum [projection of p(p) on the p, axis] con-
verges up to the momentum of 40 X 1073 mc, which is usu-
ally required when comparing results with coincidence Dop-
pler broadening experiments.

The PAW method describes also the high-momentum
Fourier coefficients of valence wave functions accurately,
which is important when one compares theoretical results
with experimental coincidence Doppler spectra. The effi-
ciency and the flexibility of the method are also great ben-
efits in the study of defects in solids. It also enables one to
treat first-row elements, transition metals, and rare-earth el-
ements.

2. Constructing the effective potential for the positron

Although the PAW method is an AE method, we do not in
practice construct the AE valence charge density n in the
three-dimensional real-space grid when constructing the ef-
fective potential for the positron or calculating the total an-
nihilation rate \. A sufficiently good approximation is to ap-
proximate n with 7+7, where 77 is the PS valence charge

density, calculated from the PS wave functions |‘f’), and 7
denotes the compensation charges as defined in Ref. 34.
(Here we adopt the notation of Ref. 34.) The compensation
charges 71 guarantee that the approximate Hartree potential
due to the valence electrons, vy[ii+74], is equal to the AE
Hartree potential vy[n] everywhere except near the nuclei,
irllside the localized compensation charges 7 (r< réomp, where

Teomp S are the cutoff radii of the compensation charges). The

charge density 7+7 itself is correct outside the radii ri
(>r' ), the cutoff radii for the partial waves |¢,) and |¢;),

comp.
from nuclei. Typically the radii are, depending on the ele-
ment, of the order of r£_=1.2, ...,2.3a, and rlcomp

=0.8,...,2.0ay, where a, is the Bohr radius (see Ref. 34).
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Our approximation is justified by the fact that near the
nuclei the positron density is vanishingly small because of
the Coulomb repulsion of the nuclei. Thereby, the positron
state is not considerably affected and the overlap of the elec-
tron and positron densities (the annihilation rate ) does not
appreciably change. Note, however, that we calculate n;(r),
the charge density of the state j in Eq. (7) represented in the
three-dimensional real-space grid, directly from the AE wave
function ¢(r).

After calculating the Coulomb potential due to both the
valence and core electrons and nuclei, vy[7i+7i+ny.], we cal-
culate the electron-positron correlation potential and solve
the positron state #,(r) in the effective potential V,(r) of Eq.
(1) using the RQMG solver.® This is a fast and accurate
method for our purpose where only the positron ground state
corresponding to a rather smooth wave function in the inter-
stitial region has to be solved.

E. Description of positron annihilation with core electrons

When modeling the positron annihilation and calculating
momentum distributions of annihilating electron-positron
pairs we describe the core electrons and the core electron
charge density using atomic orbitals of isolated atoms calcu-
lated within the DFT and the LDA. In the calculation of the
electron-positron pair wave function for the core electron
Doppler spectrum we use an isotropic parametrized positron
wave function® of the form

i (r) = Cla, + [erf(r/ay) ]}, )

where C is a normalization factor and a;,a,,a; are param-
eters determined by fitting Eq. (9) to a spherically symmetric
positron wave function calculated with the LMTO method
within the atomic-spheres approximation (ASA). It is some-
times questionable to assume the positron wave function to
be spherically symmetric around the nuclei when calculating
the core electron Doppler spectrum. In the perfect bulk the
positron wave function is very isotropic close to the nuclei.
For the positron trapped by a vacancy-type point defect the
decay of the positron wave function in the neighboring ion
cores is similar to that in the bulk. The anisotropy around the
nuclei causes extra localization in the positron-core-electron
overlap, which causes some increase of the positron momen-
tum which is omitted in the model. However, this is expected
to be small in comparison with the positron momentum due
to the decay toward the nuclei.

To test the effects of the frozen-core approximation and
the isotropic positron wave function used when modeling the
core-electron Doppler spectrum we have made two calcula-
tions for As vacancy (V) in GaAs by treating the 3d elec-
trons of Ga first as valence electrons and then as core elec-
trons. In the former calculation the full three-dimensional
positron wave function is used in constructing the three-
dimensional electron-positron pair wave functions corre-
sponding to the Ga 3d electrons whereas in the latter calcu-
lation the positron wave function has the isotropic form of
Eq. (9). The intensities of the results differ at high momenta
due to the different degree of self-consistency but when one
compares V , /bulk ratios of Doppler spectra the results co-
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incide. (As long as the 3d electrons of Ga are treated consis-
tently in the bulk and defect calculations.)

F. Calculation of forces on ions due to a localized positron

When modeling relaxations of ions around vacancy de-
fects the effects of the localized positron are included by
using the so-called atomic-superposition (ATSUP)
approximation® in which the charge density and the Coulomb
potential are constructed from those of isolated atoms. In the
CS the total energy is the sum of the total energy of the
electron-ion system and the positron energy eigenvalue e,.
Then the force due to the positron on ion j is the negative
gradient of the positron energy eigenvalue &, with respect to
the position of the ion R;. According to the Hellman-
Feynman theorem

F}==Ve, == V'H|Y") = - WVH|p),  (10)

where the positron wave function |¢/*) is assumed to be prop-
erly normalized. Within the ATSUP approximation and the
LDA the effective potential for the positron [Eq. (1)] is of the
form

V,(r)= X V& (e - R)) + vm(z n‘"f’f(lr—R.fl)),
: .

J
(11)

where V&7 and n*/ are the Coulomb potential and the
charge density of the free atom j, respectively. Inserting this
into Eq. (10) gives for the force

tj
F;’:-jdrm(r)( —(QV%OUI(}’)
’ dar

|r_Rj|
Vg (1) ) r-R; (12)
on oar |r—RJ-\ |l'— Rj|

The calculation of the positron-induced forces is fast
within the ATSUP method. The forces are used with calcu-
lated electron-ion and ion-ion forces in order to find the re-
laxed ionic configuration of the defect. The ATSUP method
itself does not give the possibility to study the relaxation of
charged defects. However, if the positron state is solved in
the self-consistent Coulomb potential instead of the superim-
posed potential of Eq. (11), the effect of the charge state
comes into play, for example, in the case of negatively
charged vacancies in semiconductors, via the stronger local-
ization of the positron in comparison with the neutral va-
cancy, which will result in larger positron-induced forces.
The approximations made when using Eq. (12) are tested
below and compared with TCDFT results.

II1. PERFECT BULK SYSTEMS
A. Testing the PAW method

We begin the testing of the PAW method for the calcula-
tion of momentum distributions of annihilating electron-
positron pairs by comparing the results to those of the
ATSUP approximation where atomic orbitals are used also

PHYSICAL REVIEW B 73, 035103 (2006)

Cu/Al intensity ratio

Ag/Al intensity ratio

FIG. 1. (Color online) (a) Bulk Cu/bulk Al and (b) bulk Ag/bulk
Al ratio curves of momentum distributions of annihilating electron-
positron pairs calculated using the state-dependent scheme. The ex-
perimental data (Ref. 35) is shown with circles. The theoretical
curves are convoluted with a Gaussian function with a FWHM of
43X 1073 mqc.

for valence electron states.’ Here we also demonstrate the
effect of the PAW transformation on the PS wave functions
by showing also results calculated using only the PS wave
functions of the PAW method. In the calculation of the elec-
tronic structures we employ the LDA exchange-correlation
energy. The positron states and the annihilation characteris-
tics are calculated within the BN-LDA.® The Doppler spectra
are calculated using the state-dependent scheme.® The mo-
mentum distributions are finally convoluted with a Gaussian
function with a full width at half maximum (FWHM) corre-
sponding to the resolution of the Doppler experiment.

We have found out that a good way to compare theoretical
and experimental Doppler spectra is to plot ratios to a refer-
ence spectrum. This way most of the systematic error is can-
celed. For the theoretical spectra this means especially that
the overestimation of the core annihilation in the LDA is not
a problem. In Fig. 1 we show our results for the ratios Cu/Al
and Ag/Al calculated with the AE-PAW method, the PS
wave functions of the PAW method and the ATSUP method
compared to the experimental data from Ref. 35. In these
calculations the Cu 3d and Ag 4d electrons are treated as
valence electrons in the PAW calculations.

Due to the non-self-consistent construction of the valence
electron wave functions the ATSUP method gives good re-
sults only at high momenta where the annihilation with the
core electrons dominates. The results obtained with the AE-
PAW method are clearly better in the low-momentum region
of the spectra. In the high-momentum region these two re-
sults are equally good. The better compatibility of the crude
ATSUP approximation with the experiment at high momenta
in Fig. 1(a) may be just a coincidence. The PS wave func-
tions of the PAW method fail to represent the high-frequency
oscillations of the valence wave functions, especially those
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FIG. 2. (Color online) Bulk Cu/bulk Al ratio curve of momen-
tum distributions of annihilating electron-positron pairs. The com-
parison between the state-dependent and the state-independent LDA
schemes is shown. The experimental data is from Ref. 35. The
theoretical curves are convoluted with a Gaussian function with a
FWHM of 4.3 1073 mc.

of the Cu 3d and Ag 4d electrons, in the core region although
they predict the ratios well up to the momentum of about
10X 1073 myc. The AE-PAW results in Fig. 1 are practically
combinations of the ATSUP (at high momenta) and the PS-
PAW (at low momenta) results. Because the quality of the
PS-PAW results is comparable to calculations made using
norm-conserving pseudowave functions'®!3 the tests made in
this section clearly show the benefits of the use of the PAW
method in the accurate calculation of momentum distribu-
tions of annihilating electron-positron pairs. We also note
that positron lifetimes obtained for different bulk systems
agree perfectly with previous all-electron results calculated
with the same enhancement factor.

B. State-dependent scheme vs state-independent LDA scheme

In this section we compare the two above-mentioned
ways to take into account the electron-positron correlation in
the calculation of the momentum distribution of annihilating
electron-positron pairs: the state-dependent scheme of Eq.
(6) and the state-independent LDA scheme of Eq. (4). For
simplicity, we use only bulk materials (Cu, Ag, Al, Si, Mo,
and Fe) as examples. We use the experimental lattice con-
stants and for Fe the experimental bcc structure. From now
on we use the AE-PAW method within the frozen-core ap-
proximation.

We show in Figs. 2 and 3 the Doppler spectra of Cu, Ag,
and Al calculated within the both above-mentioned schemes
in the logarithmic scale and also normalize the Doppler spec-
tra to the one of Al. The theoretical spectra and ratios are
compared with the experimental ones by Nagai et al.®> Both
schemes describe the low-momentum region due to the an-
nihilation with valence electrons well but the ratios tell, as
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FIG. 3. (Color online) Bulk Ag/bulk Al ratio curve of momen-
tum distributions of annihilating electron-positron pairs. The com-
parison between the state-dependent and the state-independent LDA
schemes is shown. The experimental data is from Ref. 35. The
theoretical curves are convoluted with a Gaussian function with a
FWHM of 4.3 1073 mc.

seen before,® that the state-independent LDA scheme fails to
describe the high-momentum region of the Doppler spectra
which arises from the annihilation with core electrons. The
ratio Cu/Al (see Fig. 2) calculated using the state-
independent LDA scheme is not even in a qualitative agree-
ment with the experiment at high momenta. On the contrary,
the state-dependent scheme describes the ratios quite accu-
rately in both Figs. 2 and 3. However, when one looks at the
absolute values of the spectra, the intensities at high mo-
menta are in better agreement with the experiment in the
results calculated using the state-independent LDA scheme
but there is some unphysical oscillation in the spectra that
does not exist in the state-dependent LDA results.

Further examples are shown in Figs. 4 and 5 where the
Doppler spectra of Al, Si, Mo, and Cu are normalized to the
one for Fe. For Fe we consider its magnetic ground state.
The state-independent LDA fails again at high momenta, the
result for Cu being again in the worst agreement with the
experiment.

C. LDA vs GGA within the state-dependent scheme

In Figs. 4-7 we show similar comparisons between the
BN-LDA and the GGA by Barbiellini et al.?®?” The state-
dependent scheme is used. The results calculated using the
BN-LDA for the annihilation rates are in a better agreement
with the experiment. In Figs. 6 and 7 the GGA tends to give
too high values for the ratio at high momenta. In these par-
ticular examples the failure is mainly due to the large de-
crease of the relative core annihilation rate of Al calculated
with the GGA compared to the one according to the BN-
LDA. Because the state-dependent scheme is used the shapes
of the contributions due to individual orbitals are the same
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FIG. 4. (Color online) Ratio curves of momentum distributions
of annihilating electron-positron pairs calculated using different ap-
proximations. The experimental data is from Ref. 36. The theoreti-
cal curves are convoluted with a Gaussian function with a FWHM
of 4.7X 1073 myc.

and also the shapes of the ratios are very similar. The ratios
Al/Fe, Mo/Fe, and Cu/Fe calculated with the GGA are
shown in Figs. 4 and 5. The results are in a rather good
agreement with the experiment and only slightly worse than
the ones calculated with the BN-LDA state-dependent
scheme. The relative underestimation of the core annihilation
in Al can be seen also in the ratio Al/Fe, which is lower at
high momenta than the BN-LDA result. In contrast, as seen

2 T T T T T T T T T

——  state-dependent LDA -

———- state-independent LDA

----- state-dependent GGA 3 / ]
----- experiment

1:5

Ratio to bulk Fe

p, (107 mc)

FIG. 5. (Color online) Bulk Cu/bulk Fe ratio curve of momen-
tum distributions of annihilating electron-positron pairs calculated
using different approximations. The experimental data is from Ref.
36. The theoretical curves are convoluted with a Gaussian function
with a FWHM of 4.7 X 107 myc.
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FIG. 6. (Color online) Bulk Cu/bulk Al ratio curve of momen-
tum distributions of annihilating electron-positron pairs. The com-
parison between the BN-LDA and the GGA for annihilation rates
within the state-dependent scheme is shown. The experimental data
is from Ref. 35. The theoretical curves are convoluted with a Gauss-
ian function with a FWHM of 4.3 X 1073 myc.

in Figs. 6 and 7 the GGA describes better the absolute inten-
sities of the Doppler spectra because the annihilation rates of
core orbitals are decreased.

The failure of the GGA in the ratios of Doppler spectra
can be traced back to the semiempirical interpolation form of
the GGA enhancement factor. Although its zero- and high-
gradient limits are well defined the interpolation form is only

o :-v-o.,,“ T T T T T ]
10 E E
o [ 2
= 2] —
= 107 E E
2 F o expAg S~ =
3 C bulk Ag, LDA 0. 7
& 3| ---- bulkAg GGA H
10 E o exp. Al E
F -—— bulk ALLDA =
S bulk AL, GGA H
10" = | : | s
L s A
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=
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e
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3
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FIG. 7. (Color online) Bulk Ag/bulk Al ratio curve of momen-
tum distributions of annihilating electron-positron pairs. The com-
parison between the BN-LDA and the GGA for annihilation rates
within the state-dependent scheme is shown. The experimental data
is from Ref. 35. The theoretical curves are convoluted with a Gauss-
ian function with a FWHM of 4.3 X 107> myc.
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an approximation. Moreover, the free parameter « is just
fixed to give lifetimes that are in good agreement with the
experiment. Clearly, the BN-LDA succeeds to describe better
the relative magnitudes of the annihilation rates \; between
different electronic states and different elements.

We conclude that our choice for the approximation to be
used with the state-dependent scheme is the BN-LDA be-
cause it gives better results than the GGA when comparing
intensity ratios with the experiment. It is also simpler and
more justifiable.

IV. VACANCY DEFECTS IN SOLIDS

The following step is to demonstrate that our scheme
works also for positrons localized at vacancy-type defects.
The CS has been shown to yield for a given ionic structure
lifetimes®® and also other annihilation characteristics!? in
good agreement with two-component calculations based on
the Boroniski-Nieminen formalism.

In this section we compare our results for vacancies in
metals and semiconductors to experimental Doppler broad-
ening results. We also study the effect of the positron-
induced forces on ions neighboring vacancies. Further, we
compare the ionic relaxations to previous two-component re-
sults and compare Doppler spectra calculated with the re-
laxed structures with experimental ones.

A. Relaxation tests

We study the effect of the localized positron on the relax-
ation of ions surrounding a vacancy by calculating the ionic
structures of monovacancies in bulk Si, Al, and Cu with and
without the localized positron. We consider first only isotro-
pic relaxations. For Si we use a cubic 64-atom supercell and
for Al and Cu cubic 108-atom supercells. In the electronic
structure calculations we sample the Brillouin zone using 4°,
83, and 6° Monkhorst-Pack®’ k-point meshes, respectively.
Self-consistent LDA lattice constants are used in all calcula-
tions. We use the value 0.01 eV/A as a stopping criterion for
the forces on ions when finding the self-consistent ionic con-
figurations.

We consider two different approximations for the force
calculation. We solve the positron state either in the PAW
potential or in the ATSUP potential. The first approximation
is better in the sense that the positron density is able to fol-
low the changes in the electronic structure but our force ex-
pression (12) is based on the ATSUP approximation and
therefore the PAW potential is not consistent with the poten-
tial of the force calculation and thus the total energy mini-
mum does not correspond to vanishing forces. In contrast,
the latter more crude approximation is consistent with the
force expression used and gives thus a well-defined and con-
sistent total energy minimum.

The relaxations obtained with and without the positron are
listed in Table 1. The effect of the positron on the relaxations
is clear; in all of these examples the inward relaxation is
transformed to an outward relaxation due to the positron. The
relaxations obtained with the PAW and the ATSUP potentials
are very similar. We have studied the Si vacancy with the
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TABLE 1. Relaxations and corresponding positron lifetimes 7
for monovacancies in different bulk materials. A positive (negative)
number denotes the isotropic outward (inward) relaxation in per-
centage of the nearest neighbor distance with respect to the unre-
laxed (ideal) vacancy. The table includes results calculated without
the effect of the positron and with the positron state solved in the
PAW/ATSUP potential. The relaxation is restricted to the symmetric
breathing-mode relaxation. The numbers in parenthesis are calcu-
lated using a larger 216-atom supercell. Computed bulk lifetimes
are 208 ps, 159 ps and 95 ps for Si, Al and Cu, respectively.

no e* PAW ATSUP

rel. (%) 7 (ps) rel. (%) 7 (ps) rel. (%) 7 (ps)

Si  —104 215 +5.6 (+11.3) 256 (272) +59 257
Al -17 219 +2.8 242 +29 251
Cu -13 146 +2.4 163

localized positron using also a larger cubic 216-atom super-
cell and only the I" point. The results obtained are shown in
Table I in parenthesis. The larger outward relaxation is ex-
plained by the fact that in the larger supercell the ions can
relax more freely; interactions between periodic images of
the vacancy are not as dominant as in the 64-atom supercell.
In Fig. 8 we have plotted different energy components of the
Vg; and V,; systems as functions of vacancy relaxation rela-
tive to the relaxed geometry (ionic structure obtained includ-
ing the effect of the forces due to the positron). Note, that
one can not compare absolute energies between the results
calculated with different potentials for the positron. The en-
ergy minimum for the PAW positron potential plus potential
due to the electron-ion system is in both systems at about 1%
smaller relaxation than the structure given by the relaxation
(zero forces).

Our computational positron lifetimes for the monovacan-
cies in Al and Cu are in good agreement with the experiment.
The experimental lifetimes for V; and V¢, are 251 ps (Ref.
38) and 179 ps (Ref. 39), respectively. They are high in com-
parison with the computed lifetimes since we use the LDA
enhancement factor but we find a good agreement when we
compare the vacancy-bulk lifetime differences with the ex-
periment. (The experimental lifetimes for bulk Al and bulk
Cu are 170 and 120 ps, respectively.”’’) The calculated and
experimental results for the monovacancy in Si are compared
in Sec. IV C.

B. Ga vacancy in GaAs

The triply negative Ga vacancy in GaAs has been exten-
sively studied by Puska et al.'? using the TCDFT and differ-
ent schemes (including the CS) for the electron-positron cor-
relation. Furthermore, also experimental coincidence
Doppler broadening data exists.*’ Thus, using the Ga va-
cancy as a benchmark system, it is possible to compare si-
multaneously the relaxations and lifetimes obtained to two-
component results and lifetimes and Doppler spectra to the
experiment. We model the GaAs lattice using a cubic 64-
atom supercell and sample the Brillouin zone in the
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Energy (eV)

Energy (eV)

Relaxation (%)

FIG. 8. (Color online) Different energy components as functions
of vacancy relaxation in % of the nearest-neighbor distance (rela-
tive to the relaxed geometry, only nearest neighbor ions are moved)
for Vg; in Si and V,,; in Al. The solid lines denote the total energy,
the dashed lines the energy of the electron-ion system, and the
dash-dotted line the positron energy eigenvalue. The figures show
results in which the forces are calculated using a positron state
solved in the PAW potential (O) and in the ATSUP potential (< ).
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electronic-structure calculations with a 43 Monkhorst-Pack
k-point mesh.?” In the case of the triply negative charge state
of Vg, all the localized states in the band gap are occupied
and there is no symmetry lowering Jahn-Teller relaxation. By
including the effect of the positron-induced forces on the
relaxation we get an inward relaxation of 5.9% in very good
agreement with the inward relaxation of 6.6% previously ob-
tained using the two-component BN scheme.!? In the work
by Puska et al.'> the authors did not calculate relaxations
using the CS but showed that the total energy curves calcu-
lated as a function of the breathing-mode relaxations of the
ions neighboring the vacancy using the the two-component
BN and the CS nearly coincide. When this and the good
agreement in relaxations are taken into account, one can con-
clude that our scheme for the calculation of forces gives very
similar results to ones calculated using the two-component
BN formalism.

In Fig. 9 we show the computed Doppler spectra (normal-
ized to that of bulk GaAs) obtained for the relaxed structures
of Vg, in the charge states 3— and 1- compared with the
experiment and the computed one for the neutral, ideal (un-
relaxed) Vg,. The corresponding relaxations and lifetimes
are tabulated in Table II. Only isotropic relaxations have
been considered using the small 64-atom supercell although
a symmetry-breaking relaxation is expected for the 1- charge
state. The agreement with the experiment both in the Doppler
spectrum and in the lifetime (relative to the bulk one) is best
for the 1- charge state. The inward relaxation for the 3— is too
strong compared with the experiment because the lifetime
and the ratio curve in Fig. 9 are too close to the bulk values.

We have also calculated the relaxation of V{, using a
larger cubic 216-atom supercell (with this supercell we use
only the I' point and do not treat the Ga 3d electrons as
valence electrons). The calculation gives slightly smaller in-
ward relaxation than that with the 64-atom cell. The results
are given in Table II in parenthesis. We also break the T
symmetry by displacing the nearest-neighbor atoms of the

T I T I T I T
¢ experiment
B R VGa (unrelaxed)
2

e === Vi, (relaxed)

<CC(: 1 e VGali (relaxed)
@) FIG. 9. (Color online) Theo-
—] < - S . Rt retical ratio curves for the Ga va-
B iy cancy in GaAs. The experimental
8 P R & T i e, data, measured from electron-
s | R irradiated GaAs, is from Ref. 40.
'g The theoretical curves are convo-
Y+ © o o < luted with a Gaussian function
o with a FWHM of 5.5 X 1073 myc.

0.6 — o -
3
°
1 I 1 I 1 I 1 ©
0 10 20 30 40
-3
p, (10" myc)
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TABLE II. Relaxations and lifetimes for different charge states
of Vg, in GaAs. The numbers in parenthesis are calculated using a
larger 216-atom supercell. The relaxation is restricted to the sym-
metric breathing-mode relaxation. A positive (negative) number de-
notes isotropic outward (inward) relaxation. The computed bulk
GaAs lifetime is 208 ps.

defect rel. (%) 7 (ps) 7= Touik (PS)
unrel. V&, 0.0 249 38
Vi -2.8(-2.3) 237 (244) 26 (33)
Vi -5.9 229 18
Via [exp. (Ref. 41)] 260 30

vacancy in order to create a symmetry-breaking relaxation
with the expected C,, symmetry. The corresponding lifetime
is 243 ps, which is almost the same as when assuming the T
symmetry. (Note that Fig. 9 does not include any results
calculated with the 216-atom supercell.)

The relative core annihilation rate (the experimentally
measured relative W parameter, relative wrt bulk value) is
sensitive to the treatment of the electron-positron correlation
effects. The correlation potential used affects the degree of
the localization of the positron and thereby the positron-core
electron overlap and the core annihilation rate.'> Puska et
al.'? obtained for the triply negative Ga vacancy in GaAs the
values of 0.88 and 0.34 using the two-component BN for-
malism and the scheme by Gilgien et al.,'" respectively. The
computational values in the present work (estimated from
Fig. 9) are of the order of 0.8 in good agreement with the
experiment and the previous result obtained with the BN
formalism. Our scheme has already previously been success-
ful in describing the relative core annihilation rates in the
case of Ga vacancy in GaN (Ref. 25) and monovacancy in
Al

C. Neutral monovacancy in Si

The neutral monovacancy in Si is a very complex system
with a flat potential-energy surface and several competing

PHYSICAL REVIEW B 73, 035103 (2006)

local minima as a function of ion positions.*>*} One can get
even qualitatively different results with two different ap-
proximations, e.g., for the exchange-correlation potential.**
We study now the monovacancy in Si including the forces
caused by the localized positron. We use the 216-atom su-
percell and the I" point, begin from the structure obtained as
a result from the isotropic relaxation (see Table II) and break
the T, symmetry by displacing the nearest-neighbor atoms of
the vacancy in order to create a symmetry-breaking relax-
ation with the expected D,,; symmetry. We confirm the fact
pointed out by several earlier studies*>* that a supercell
with at least 216 atoms is needed in order to obtain a con-
vergence with respect to the supercell size.

Our calculation gives an outward-relaxed structure with a
slight D,,; symmetry. The corresponding lifetime is 270 ps;
only 2 ps less than that for the vacancy constrained to the 7,
symmetry. In Fig. 10 we show the obtained vacancy/bulk
ratio of Doppler spectra. No experimental Doppler broaden-
ing data exists for the monovacancy in Si. Mikinen et al.*®
and Polity et al.*’ obtained the positron lifetimes of 273 and
282 ps, respectively, for the monovacancy in Si created by
electron irradiation. Taking into account that the calculated
bulk lifetime with the LDA lattice constant used (208 ps) is
lower than the experimental ones by Mikinen ef al. and Pol-
ity er al. (221 and 218 ps, respectively) we conclude that our
result for the lifetime is in a good agreement with experi-
ment.

Previously, Saito and Oshiyama®® and Makhov and
Lewis® have studied vacancies in Si within the two-
component scheme by Gilgien et al.'! including the effects of
forces due to the positron. Their lifetimes for the monova-
cancy are reasonable but the relative W parameter of 0.28
estimated from Saito and Oshiyama’s data is very low in
comparison with our result, which is 0.72 (both evaluated
using calculated annihilation rates as in Ref. 12).

V. SUMMARY AND CONCLUSIONS

In conclusion, we have presented an accurate scheme for
the calculation of momentum distributions of annihilating

T T T

—

Ratio to bulk Si[100]
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FIG. 10. Theoretical ratio
curve for the neutral Si vacancy in
Si. The the data is convoluted
with a Gaussian function with a
FWHM of 3.7 X 1073 myc
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electron-positron pairs in solids based on the projector
augmented-wave method. We have compared three com-
monly used approaches for the momentum distributions
within the DFT framework. We have shown that the most
appropriate way to take into account screening effects in the
calculation of momentum distributions is to use a constant,
state-dependent enhancement factor. Further, we have dem-
onstrated that a position-dependent enhancement factor gives
unphysical results when ratios of Doppler spectra are consid-
ered. The differences in results of the BN-LDA and the GGA
by Barbiellini et al. is not large. Except for one of the studied
elements (Al) the GGA gives comparable results. We choose
to rely on the BN-LDA because of its simplicity and lack of
semiempiric parameters. We underline that our choices are
based on the theory-experiment comparison of ratios of mo-
mentum distributions for different materials rather than their
absolute values. The latter may often be better described in
the GGA and in the position-dependent enhancement
schemes.

In addition to bulk solids our scheme is also reliable in the
case of defects in materials. The comparison of our results
for the Ga vacancy in GaAs to experiment suggests that the
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Ga vacancy seen in the experiment is negative but less than
triply negative, which is the charge state suggested by a re-
cent ab initio study.*’ For the neutral monovacancy in Si we
have presented a prediction to be compared with future life-
time and coincidence Doppler broadening experiments.
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