92 research outputs found
Toward the next generation of research into small area effects on health : a synthesis of multilevel investigations published since July 1998.
To map out area effects on health research, this study had the following aims: (1) to inventory multilevel investigations of area effects on self rated health, cardiovascular diseases and risk factors, and mortality among adults; (2) to describe and critically discuss methodological approaches employed and results observed; and (3) to formulate selected recommendations for advancing the study of area effects on health. Overall, 86 studies were inventoried. Although several innovative methodological approaches and analytical designs were found, small areas are most often operationalised using administrative and statistical spatial units. Most studies used indicators of area socioeconomic status derived from censuses, and few provided information on the validity and reliability of measures of exposures. A consistent finding was that a significant portion of the variation in health is associated with area context independently of individual characteristics. Area effects on health, although significant in most studies, often depend on the health outcome studied, the measure of area exposure used, and the spatial scale at which associations are examined
Recommended from our members
Why are “What” and “Where” Processed by Separate Cortical Visual Systems? A Computational Investigation
In the primate visual system, the identification of objects and the processing of spatial information are accomplished by different cortical pathways. The computational properties of this “two-systems” design were explored by constructing simplifying connectionist models. The models were designed to simultaneously classify and locate shapes that could appear in multiple positions in a matrix, and the ease of forming representations of the two kinds of information was measured. Some networks were designed so that all hidden nodes projected to all output nodes, whereas others had the hidden nodes split into two groups, with some projecting to the output nodes that registered shape identity and the remainder projecting to the output nodes that registered location. The simulations revealed that splitting processing into separate streams for identifying and locating a shape led to better performance only under some circumstances. Provided that enough computational resources were available in both streams, split networks were able to develop more efficient internal representations, as revealed by detailed analyses of the patterns of weights between connections.Psycholog
Neurobiological signatures of L2 proficiency: Evidence from a bi-directional cross-linguistic study
Available online 12 November 2018Recent evidence has shown that convergence of print and speech processing across a network of
primarily left-hemisphere regions of the brain is a predictor of future reading skills in children,
and a marker of fluent reading ability in adults. The present study extends these findings into the
domain of second-language (L2) literacy, through brain imaging data of English and Hebrew L2
learners. Participants received an fMRI brain scan, while performing a semantic judgement task
on spoken and written words and pseudowords in both their L1 and L2, alongside a battery of L1
and L2 behavioural measures. Imaging results show, overall, a similar network of activation for
reading across the two languages, alongside significant convergence of print and speech processing
across a network of left-hemisphere regions in both L1 and L2 and in both cohorts.
Importantly, convergence is greater for L1 in occipito-temporal regions tied to automatic skilled
reading processes including the visual word-form area, but greater for L2 in frontal regions of the
reading network, tied to more effortful, active processing. The main groupwise brain effects tell a
similar story, with greater L2 than L1 activation across frontal, temporal and parietal regions, but
greater L1 than L2 activation in parieto-occipital regions tied to automatic mapping processes in
skilled reading. These results provide evidence for the shifting of the reading networks towards
more automatic processing as reading proficiency rises and the mappings and statistics of the new
orthography are learned and incorporated into the reading system.This paper was supported by the ERC Advanced grant awarded to Ram Frost (project 692502), the Israel Science Foundation
(Grant 217/14 awarded to Ram Frost), and by the National Institute of Child Health and Human Development at the National
Institutes of Health (RO1 HD 067364 awarded to Ken Pugh and Ram Frost, and PO1 HD 01994 awarded to Jay Rueckl)
Common neural basis of motor sequence learning and word recognition and its relation with individual differences in reading skill
To investigate the neural basis of a common statistical learning mechanism involved in motor sequence learning and decoding, we recorded brain activation from participants during a serial reaction time (SRT) task and a word reading task using functional magnetic resonance imaging. In the SRT task, a manual response was made depending on the location of a visual cue, and the order of the locations was either fixed or random. In the word reading task, visual words were passively presented. In the inferior frontal gyrus pars triangularis (IFGpTr) and the insula, differences in activation between the ordered and random condition in the SRT task and activation to printed words in the word reading task were correlated with the participants' decoding ability. We speculate that extraction of statistically predictable patterns in the IFGpTr and insula contributes to both motor sequence learning and orthographic learning, and therefore predicts individual differences in decoding skill
Semantic transparency in free stems: the effect of orthography-semantics consistency in word recognition
A largely overlooked side effect in most studies of morphological priming is a consistent main effect of semantic transparency across priming conditions. That is, participants are faster at recognizing stems from transparent sets (e.g., farm) in comparison to stems from opaque sets (e.g., fruit), regardless of the preceding primes. This suggests that semantic transparency may also be consistently associated with some property of the stem word. We propose that this property might be traced back to the consistency, throughout the lexicon, between the orthographic form of a word and its meaning, here named Orthography-Semantics Consistency (OSC), and that an imbalance in OSC scores might explain the "stem transparency" effect. We exploited distributional semantic models to quantitatively characterize OSC, and tested its effect on visual word identification relying on large-scale data taken from the British Lexicon Project (BLP). Results indicated that (a) the "stem transparency" effect is solid and reliable, insofar as it holds in BLP lexical decision times (Experiment 1); (b) an imbalance in terms of OSC can account for it (Experiment 2); and (c) more generally, OSC explains variance in a large item sample from the BLP, proving to be an effective predictor in visual word access (Experiment 3)
Expression of cell cycle proteins in male breast carcinoma
<p>Abstract</p> <p>Introduction</p> <p>Male breast cancer (MBC) is a rare, yet potentially aggressive disease. Although literature regarding female breast cancer (FBC) is extensive, little is known about the etiopathogenesis of male breast cancer. Studies from our laboratory show that MBCs have a distinct immunophenotypic profile, suggesting that the etiopathogenesis of MBC is different from FBCs. The aim of this study was to evaluate and correlate the immunohistochemical expression of cell cycle proteins in male breast carcinoma to significant clinico-biological endpoints.</p> <p>Methods</p> <p>75 cases of MBC were identified using the records of the Saskatchewan Cancer Agency over 26 years (1970-1996). Cases were reviewed and analyzed for the immunohistochemical expression of PCNA, Ki67, p27, p16, p57, p21, cyclin-D1 and c-myc and correlated to clinico-biological endpoints of tumor size, node status, stage of the disease, and disease free survival (DFS).</p> <p>Results</p> <p>Decreased DFS was observed in the majority of tumors that overexpressed PCNA (98%, p = 0.004). The overexpression of PCNA was inversely correlated to the expression of Ki67 which was predominantly negative (78.3%). Cyclin D1 was overexpressed in 83.7% of cases. Cyclin D1 positive tumors were smaller than 2 cm (55.6%, p = 0.005), had a low incidence of lymph node metastasis (38.2%, p = 0.04) and were associated with increased DFS of >150 months (p = 0.04). Overexpression of c-myc (90%) was linked with a higher incidence of node negativity (58.3%, p = 0.006) and increased DFS (p = 0.04). p27 over expression was associated with decreased lymph node metastasis (p = 0.04). P21 and p57 positive tumors were related to decreased DFS (p = 0.04). Though p16 was overexpressed in 76.6%, this did not reach statistical significance with DFS (p = 0.06) or nodal status (p = 0.07).</p> <p>Conclusion</p> <p>Aberrant cell cycle protein expression supports our view that these are important pathways involved in the etiopathogenesis of MBC. Tumors with overexpression of Cyclin D1 and c-myc had better outcomes, in contrast to tumors with overexpression of p21, p57, and PCNA with significantly worse outcomes. P27 appears to be a predictive marker for lymph nodal status. Such observation strongly suggests that dysregulation of cell cycle proteins may play a unique role in the initiation and progression of disease in male breast cancer. Such findings open up new avenues for the treatment of MBC as a suitable candidate for novel CDK-based anticancer therapies in the future.</p
The Influence of Object Relative Size on Priming and Explicit Memory
We investigated the effects of object relative size on priming and explicit memory for color photos of common objects. Participants were presented with color photos of pairs of objects displayed in either appropriate or inappropriate relative sizes. Implicit memory was assessed by speed of object size ratings whereas explicit memory was assessed by an old/new recognition test. Study-to-test changes in relative size reduced both priming and explicit memory and had large effects for objects displayed in large vs. small size at test. Our findings of substantial size-specific influences on priming with common objects under some but not other conditions are consistent with instance views of object perception and priming but inconsistent with structural description views
- …