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Abstract

To investigate the neural basis of a common statistical learning mechanism involved in motor 

sequence learning and decoding, we recorded same participants’ brain activation in a serial 

reaction time (SRT) and word reading task using functional magnetic resonance imaging. In the 

SRT, a manual response was made depending on the location of a visual cue, and the order of the 

locations was either fixed or random. In the word reading task, visual words were passively 

presented. Compared to less skilled readers, more skilled readers showed greater differences in 

activation in the inferior frontal gyrus pars triangularis (IFGpTr) and the insula between the 

ordered and random condition in the SRT task and greater activation in those regions in the word 

reading task. It suggests that extraction of statistically predictable patterns in the IFGpTr and 

insula contributes to both motor sequence learning and orthographic learning, and therefore 

predicts individual differences in decoding skill.

Introduction

Learning to read builds on multiple skills, such as phonemic segmentation and sequencing 

(Melby-Lervag et al., 2012; Wimmer, 1996), detecting letter patterns (Cunningham et al., 

2001) and mapping from orthography to phonology (Ziegler & Goswami, 2005). In addition, 

substantial research suggests that sensitivity to orthographic structure, or the frequency of 

particular letter sequences is an important aspect of learning to read. Indeed, Cunningham 

and Stanovich (1993) found that young children’s sensitivity to frequency of certain letter 

sequences (e.g., “yikk” vs. “yinn”) accounted for approximately thirty percent of unique 

variance in their word recognition ability. Bonte et al. (2007) found that children with 

development dyslexia (DD) did not show comparable sensitivity to the phonotactic 

frequency of letter sequences of auditory non-words compared to typically developing 

readers (TD) (also see Apel et al., 2006). These findings suggest that the ability to extract 
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statistical patterns based on the order and frequency information of letters or speech is an 

important factor in learning to read.

In addition to sensitivity to orthographic or speech sequences, non-linguistic sequence 

learning has been associated with reading ability. In a typical serial reaction time (SRT) 

paradigm, participants press a button with different fingers according to the location of 

visual cues, which occur in two different conditions: ordered and random. In the ordered 

condition, the order of the visual cues is fixed, and a sequential dependency occurs between 

neighboring elements (e.g., 1 is always followed by 2) and is repeated across blocks (e.g., 

1234, 1234). In the random condition, orders are not fixed and are not repeated across blocks 

(e.g., 3214, 2134). Howard et al. (2006) compared TD and DD adults in a modified SRT task 

in which the sequential dependencies occurred in non-adjacent elements (e.g., 1r2r3r4, 2 is 

predicted by 1 and r is a random element). To determine the specificity of DD’s learning 

impairment, Howard et al. also administered a spatial contextual cueing task (Chun & Jiang, 

1998) in which participants judged the orientation of a target while a task-irrelevant spatial 

pattern either co-occurred with the target in the repetition condition, or never occurred with 

the target before in the new condition. Learning was defined by the RT difference between 

the random condition and the ordered condition in the sequential learning task, and between 

the new condition and the repetition condition in the spatial contextual cueing task. 

Compared to TDs, DDs were inferior in motor sequential learning but better in the spatial 

contextual cueing task. Lum et al.’s meta-analysis (2013) showed the group effect (TDs 

outperforming DDs) on sequential learning in the SRT task holds regardless of task variation 

across studies. These findings suggest that basic non-linguistic sequential coding may 

mediate the association between reading ability and orthographic or speech sequence 

learning.

The SRT task comprises multiple processes, including early visual-motor association, 

detection of serial order embedded in the motor response, and automization of both the 

visual-motor association and the ordered motoric responses. As such, the correlation 

between sequence learning and reading ability could arise from individual differences in any 

of these processes. With respect to neurobiological correlates of these processes, Nicolson et 

al. (1999) conducted an fMRI study on TD and DD adults in motor sequence learning. The 

participants made a key-press response based on a specific auditory sound, with feedback 

indicating whether or not the response was correct. The same sequence was practiced for 

two hours; following this, the learned sequence and a new sequence of auditory tones were 

presented to the participants in the scanner. Behaviorally, DDs made more errors than TDs in 

performing the well-practiced sequence. The fMRI results showed that compared to TD, DD 

showed lower activation of the left cerebellum and the left cingulate cortex while performing 

the learned sequence, and lower activation of the right cerebellum while performing the new 

sequence. Hence, the authors propose that both sequence learning and orthographic learning 

involve automization in the cortical-cerebellar network, which requires substantial practice 

before performance becomes rapid and accurate (Nicolson & Fawcett, 2007). Menghini et 

al. (2006) found that adults with DD, relative to TD, showed reduced activation of the left 

supplementary motoric area (SMA) during the early stages of sequence learning, and 

enhanced activation of the bilateral cerebellum and the bilateral inferior parietal lobule 

during later stages. Although these fMRI findings demonstrated opposite activation patterns 
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of the cerebellum in the TD/DD contrast, which may be due to differences in instruction 

(explicit learning with feedback vs. implicit learning without feedback), they together 

suggest altered cerebellar function for action execution and maintenance in DD.

Although several studies have found sequence learning and reading to be correlated, these 

processes rely on at least partly non-overlapping neural circuitry (though shared pathways 

are suggested). Thus the few studies of TD/DD contrasts in sequence learning suggest 

prominent roles for the cerebellum, anterior cingulate and premotor areas. On the other 

hand, studies contrasting TD and DD in reading and phonological processing tasks 

consistently implicate the fusiform visual word form area (VWFA), posterior superior 

temporal gyrus (pSTG), the angular gyrus (ANG), the middle temporal gyrus (MTG), and 

the inferior frontal gyrus (IFG) during processing of linguistic stimuli (Richlan et al., 2011; 

Paulesu et al., 2014; Pugh et al., 2010), whereas cerebellar involvement is only sometimes 

reported (Fulbright et al., 1999; Preston et al., 2010). Moreover, other studies have found 

that some of these reading critical regions (e.g., the VWFA and IFG) are involved in 

statistical learning and sequence detection when linguistic stimuli are used (Binder et al. 

2006; Frost et al., 2005; Fiez et al. 1999; Herbster et al. 1997; Graves et al., 2010; Mechelli 

et al. 2005; Vinckier et al. 2007). There is evidence for both shared and unshared circuits for 

linguistic processes and non-linguistic sequence learning, raising the question of whether a 

subset of shared neuro-cognitive mechanisms gives rise to the observed correlations between 

reading and sequence learning (Pugh et al., 2013).

Although previous neuroimaging work implicates partially distinct and partially overlapping 

neural circuits for linguistic processing and non-linguistic sequence learning, these studies 

were not designed to directly compare these circuits in the same individual and to link 

commonalities to behavioral variation. The present study directly compared these processes 

at the neurobiological level to determine whether any neural substrates are common to both 

the SRT task and linguistic processing tasks. Also, we treated individual differences of 

reading abilities using a dimensional approach, and examined whether activity in any 

overlapping regions was associated with individual differences in reading skill. To do this, 

we collected neuroimaging data during SRT task performance and during reading from a 

large sample of participants with substantial variability in reading ability (percentile scores 

of the reading scores between 4 and 93 in a normal distribution, see Table 1 for more 

details). We hypothesized that if processes that detect order or regular patterns are common 

to reading and sequence learning, the IFG and VWFA should be commonly involved in both 

tasks, and their activation should scale according to individual differences in reading skill. 

Alternatively, if skill automization is shared across reading and sequence learning, the 

cerebellum should be commonly involved in the two tasks and predict individual differences 

in reading skills.

Method

Participants—Eighty-nine adolescents (34 female, 55 male) who were native English 

speakers and had normal/corrected-to-normal vision and hearing were recruited for the 

current study. All participants completed a battery of standardized assessments for reading 

ability and two fMRI tasks. Specifically, the participants’ reading ability was measured 
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using composite age-adjusted standard scores of Word Attack (producing correct sounds of 

letters or pronounceable pseudowords) and Letter-Word Identification (identifying printed 

letters or words) in Woodcock-Johnson III Tests of Achievement (WJ-III; Woodcock et al., 

2001). The participants’ non-verbal cognitive abilities were measured using composite 

scores of Block Design (making specific patterns using small blocks), Matrix Reasoning 

(identifying a constituent based on analogies to existing patterns), and Picture Completion 

(making a completed picture by filling in a missing element) in the Wechsler Abbreviated 

Scale of Intelligence II (WASI-II; Wechsler, 1999). The participants’ performance in the 

standardized tests as well as some demographic information is summarized in Table 1. All 

participants were consented in compliance with Yale University’s Institutional Review 

Board for protection of human participants.

Stimuli & Procedure

1. Serial reaction time task: During fMRI scanning, participants were asked to perform a 

stimulus-response task in which they were required to press a button corresponding to the 

location of a visual stimulus in a display. At the beginning of each trial, a gray box appeared 

in the center of the monitor against a black background. After 83 milliseconds, an asterisk 

(1° x 1°) appeared for 750 milliseconds in one of four locations within this gray box (Figure 

1). Four straight lines beneath the asterisk indicated the four possible locations above which 

the asterisk could appear. Participants were asked to indicate the location (1, 2, 3 or 4) of the 

asterisk with their index finger, middle finger, ring finger or pinky finger, respectively. In the 

ordered condition, twelve consecutive targets always appeared in a fixed first order 

sequence: 121423413243. In the random condition, twelve consecutive targets appeared 

randomly. In total, participants completed 936 trials distributed evenly across three runs. 

Within each run, the two conditions alternated so that the random condition (24 trials) 

always preceded the ordered condition (96 trials).

2. Word reading task: During fMRI scanning, visual words were presented to participants 

without an explicit task to elicit processing more akin to natural reading. All words were 

one-syllable medium- to high-frequency (frequency range: 5626 and 580704) words 

according to the English Lexicon Project (Balota et al., 2007). On each trial, four words 

were presented rapidly and sequentially with a duration of 250 ms per word, and with an ISI 

of 200 ms between words. Between trials, there was a jittered inter-trial interval of four to 

seven seconds. Participants completed two runs with twelve trials per run, for a total of 24 

trials.

Acquisition of MRI data

1. SRT task: Anatomical and functional imaging data were acquired using a Siemens 3.0T 

Trio Tim whole-body MRI System (Siemens Medical Solutions, Erlangen, Germany) with a 

12-channel head coil located at the Yale University School of Medicine. T2*-weighted 

functional images were acquired for 32 axial-oblique slices prescribed parallel to the 

intercommissural line using single shot, gradient echo, echo planar imaging (EPI) with the 

following parameters: FA = 80°; TE = 30 ms; TR = 2000 ms; FOV = 220; 4 mm slice 

thickness, no gap; matrix size = 64 × 64 × 32; voxel size = 3.438 mm x 3.438 mm x 4 mm. 

There were 156 volumes in each run. A high resolution structural scan was acquired in the 
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same orientation as the functional slices using an MPRAGE sequence with the following 

parameters: FA = 7°; TE = 3.66; TR = 2530 ms; FOV = 256; 1 mm slice thickness, no gap; 

matrix size = 256 × 256; voxel size 1 mm isotropic.

2. Word reading task: Acquisition parameters were identical to those for the SRT task, 

except that there were 151 volumes acquired per run.

Analysis of MRI data

1. SRT task: Data analysis was performed using AFNI (Cox, 1996). Anatomic images 

were skull stripped and warped to Talairach space using a nonlinear transform. For 

functional runs, the first six volumes in each run were removed to allow for stabilization of 

the magnetic field. Functional images were corrected for slice acquisition time, corrected for 

motion, co-registered with anatomical images, nonlinear warped to Talairach space, and 

smoothed using an 8 mm FWHM Gaussian kernel. All trials were included regardless of 

whether or not responses were correct; however, any volumes with greater than 10% outlier 

voxels or more than 0.3 mm point-to-point movement were removed from further analyses 

(2.0%). Single subject data were entered into a standard generalized linear model (GLM) 

analysis with two variables of interest (Run and Condition) as well as nuisance regressors 

for the six motion parameters (3 rotation and 3 translation parameters) and 3rd order 

polynomial drift terms. Six activation maps for each subject were used in group analyses: the 

ordered condition and the random condition for each of the three runs.

2. Word reading task: Pre-processing was identical to the SRT task and 1.9% of volumes 

were removed due to outliers and/or head motions. Single subject data were entered into a 

standard GLM analysis with regressors for the stimulus condition and nuisance regressors 

for the six motion parameters and 2nd order polynomial drift terms. The activation map of 

the visual word condition for each subject was used in group analyses.

3. Conjunction analysis: An activation map for the SRT task was created by averaging 

across the six conditions (i.e., ordered and random trials in each of the three runs) for each 

subject and then a groupwise map was generated by using the AFNI program 3dttest++ 
(whole-brain FDR corrected at p < 0.05). The random condition, though it does not tap into 

sequential processing, requires learning to map between visual information and motor 

responses. The latter process is also involved in reading. Hence, both conditions in the SRT 

task were included to allow us to extract the common processes between the SRT and the 

word reading task. A groupwise activation map for the word reading task was created for the 

visual word condition in the same way as the SRT task. The conjunction map was created by 

using a step function in the AFNI program 3dcalc on the groupwise activation maps of the 

SRT task and the word reading task. Brain regions identified in the conjunction map were 

further constrained using the CA-N27-ML and Talairach Daemon atlases in AFNI.
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Results

1. Behavioral results in the SRT task

Any trials with incorrect responses (11.05% of the data) were excluded from further 

analyses. Afterwards, RTs that were either shorter than 250 ms or were more than three 

standard deviations above or below each participant’s respective condition-wise mean 

(1.24% of the data) were excluded from further analyses. The learning score of the sequence 

was defined by the reaction time difference (hereafter: dRT) between the random and 

ordered condition, which was calculated separately for each of the three runs (Table 2). WJ-

III Basic reading scores were regressed on WASI-II Performance IQ so that any observed 

effects could be specifically attributed to individual differences in reading skill. Learning 

scores were entered into a linear mixed effects model based on maximum likelihood 

methods using the lme4 package in R (Bates et al., 2015). The model included Run 

(categorical within-participants factor), Reading score (continuous between-participants 

factor), and the interaction between Run and Reading score as fixed effects and a random 

by-participant intercept as well as random by-subject slopes for all of the fixed effects (i.e., 

the maximal random effect structure, see Barr, 2013). Results showed that the effect of Run 

and the effect of Reading score were not significant (X2(1) = 5.73, p = 0.057; X2(1) = 3.17, 

p = 0.075). However, the interaction between Run and Reading score was significant (X2(2) 
= 7.8, p = 0.02). Post-hoc comparisons showed that dRTs significantly correlated with 

Reading score in the third run (r = 0.33, p = 0.001) but not in the other runs (ps > 0.1). No 

effects were detected for mean error rates (ps > 0.5).

2. Neuroimaging results

The conjunction analysis revealed brain regions that were commonly activated in the SRT 

task and the word reading task including the cerebellum, fusiform gyrus, the anterior and 

posterior STG (aSTG and pSTG), inferior parietal lobule, the insula, the IFG pars 
triangularis (IFGpTr) and the IFG pars opercularis (IFGpOp), the putamen, the precentral 

gyrus, and the SMA, in both hemispheres (Figure 3).

2.2. The relationship between reading skill and brain activation in the SRT 
and word reading tasks—For the brain regions that were commonly activated across the 

SRT and word reading tasks, we tested whether the extent of engagement of these regions 

for each task was related to reading ability. For the SRT task, similar to the behavioral data 

analysis, we calculated the difference in beta values between the ordered and random 

conditions in the 22 common brain regions identified by the conjunction analysis, and used 

these values as the dependent variable in a linear mixed effects model with Run and Reading 

score and their interaction as fixed effects and participants as a random effect. A significant 

interaction between Reading score and Run was observed in the right Insula (X2(2) = 8.28, p 
= 0.016) and the right IFGpTr (X2(2) = 6.06, p = 0.048). A follow-up correlation analysis 

showed that in the right insula, the difference in beta values between the ordered and random 

conditions in the second run significantly correlated with Reading score (r = 0.26, t(87) = 
2.48, p = 0.015). In the right IFGpTr, there was a marginal correlation between Reading 

score and the difference in beta values between the ordered and random conditions in the 

second run (r = 0.21, t(87) = 1.97, p = 0.052) (Figure 4a).
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For the word reading task, we performed a simple correlation analysis between Reading 

score and beta values in the visual word condition. Reading score were significantly 

correlated with beta values in the left fusiform (r = 0.29, t(87) = 2.81, p = 0.006), the right 

insula (r = 0.29, t(87) = 2.87, p = 0.005), the left pSTG (r = 0.26, t(87) = 2.47, p = 0.015), 

and the right IFGpTr (r = 0.35, t(87) = 3.51, p = 0.001) (Figure 4b).

Discussion

The current study had two aims. First, we identified shared brain circuits for the SRT task 

and reading; second, we examined whether brain regions that were commonly engaged 

during sequence learning and word reading were also related to individual differences in 

reading ability (given the observed correlation between sequence learning and reading). 

Behaviorally, the correlation between learning in the SRT task and reading skill was 

replicated in the current study: more skilled readers showed a greater difference in their 

reaction times between the ordered and random conditions compared to less skilled readers.

At the neural level, we identified a network of regions common to both the SRT and word 

reading task. Specifically, the fusiform gyrus, the precentral area and the SMA might reflect 

visual (symbols, letters) and motoric (button press, covert speech) processing common to the 

SRT task and the word reading task. The aSTG and pSTG likely reflect the need for cross-

modal association in the SRT task, and similarly, print-speech conversion during the word 

reading task (Friederici, 2011; Price, 2012). The IFGpTr, IFGpOp and insula are involved in 

sequence coding and sequential binding which are required for both tasks (Friederici, 2011; 

Witt et al., 2008). And finally, the putamen and cerebellum have been associated with 

consolidation and automatic performance of learned skills, which are known to be important 

to both reading and sequence learning (Doyon, 2008; Kotz et al., 2009; Nicolson & Fawcett, 

2007; Ullman, 2004). The shared neural network suggests that bimodal mapping, sequential 

binding and storage were commonly involved in sequence learning and reading.

The brain-behavior correlations observed for the SRT task show that more skilled readers 

exhibit greater activation in the right insula and the right IFGpTr for ordered relative to 

random trials. Reading ability was also positively associated with activation of the left 

fusiform area, the left pSTG, the right IFGpTr and the right insula during the word reading 

task, findings which are consistent with previous neuroimaging studies of individual 

differences in reading (Richlan et al., 2011; Paulesu et al., 2014; Pugh et al., 2013). The 

current results indicate that shared variance between sequence learning and reading skill 

may arise from common engagement of the right insula and the right IFGpTr for these tasks.

In the non-linguistic domain, the right insula and the right IFG are often associated with 

visuomotor synchrony and sequential processing (Cross et al., 2013; Rieckmann et al., 2010; 

Witt et al., 2008). In the linguistic domain, the insula is involved in phonological processing 

(McDermott et al., 2003; Mechelli et al., 2007), and is also sensitive to the complexity of 

speech sequences (Bohland et al., 2006); furthermore, it is has been shown to be more active 

in successful learners of speech sounds than it is in less successful learners (Segawa et al., 

2015; Wong et al., 2007). The right IFGpTr associates number word combination (Hung et 

al., 2015). With respect to studies of good and poor readers, DD adults failed to activate the 

left insula in a rhyming judgment task compared to TD adults (Paulesu et al., 1996). 
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Nicolson et al. (1999) observed that those with DD over-activated the left insula in the 

contrast of newly-learned vs. well-practiced sequences. The group difference in activation 

patterns and lateralization in Nicolson et al.’s study were different from our findings, which 

may be ascribed to the differences between explicit and implicit learning. In addition, 

Nicolson et al.’s results were based on the contrast between TDs and DDs whereas the 

current study focused on the effect of individual difference in decoding skills on sequential 

learning. The current findings suggest that sequential processing is commonly involved and 

predicts individual differences in motor learning in the SRT task and word retrieval in the 

word reading task. In the word reading task, we speculate that the skilled readers engaged 

these areas more than less skilled readers because they were more likely to retrieve the serial 

phonological patterns and covertly or overtly read the visual words.

There have been claims, albeit somewhat controversial, that dyslexia is caused by impaired 

phonological processing (Castles & Coltheart, 2004; Melby-Lervag et al., 2012; Morais & 

Kolinsky, 1994). However, because phonological processing is supported by phonemic 

sequencing and acquisition of grapheme-to-phoneme conversion rules, deficits in learning 

regularities, serial-order and rules may also contribute to reading problems (Baker, 1972; 

Morrison & Manis, 1982). Consistent with this hypothesis, the current findings and previous 

research from our lab has demonstrated that sequential processing of motoric action (current 

paper) and temporal order (Pugh et al., 2013) both co-vary with reading ability in adults and 

beginning readers. However, brain regions mediating the covariance between the two 

abilities differed across the two studies: here, effects are observed in the insula and IFGpTr, 

whereas for temporal order (Pugh et al., 2013), associations were observed in the STG and 

the thalamus. Future studies should consider whether such differences can be attributed to 

either age differences (15–25 vs. 5–9) or task differences.

It is worth noting that the brain-behavior correlation for the SRT task was observed in the 

second run whereas the correlation between decoding ability and learning scores for the SRT 

was observed only in the third run. Whereas we cannot be sure it reflects a meaningful 

pattern, an interesting speculation is that this mismatch could be attributed to brain-signals 

and behavioral performance reflecting different stages of the cognitive processing under 

investigation. Brain signals during the SRT task reflect visual-motor association and 

sequential encoding (Eversheim & Bock, 2001; Hikosaka 1999; Müller et al., 2002) whereas 

the external behavior (i.e., the learning outcome based on the reaction time measure) is 

presumably the consequence of all preceding neural activity. As a second note, some 

limitations of the current study should be considered. First, the SRT task and the word 

reading task may tap into other common cognitive process, such as attention or inhibition 

(Aron et al., 2014; Corbetta & Shulman, 2002), other than the sequential processing we 

focused on. The SRT task demands overt motor responses and taps into sequential learning. 

The word reading task requires covert naming and does not tap into learning processes. 

Besides, sequential decoding is not necessarily involved in reading, especially for the 

familiar words like those used in the current study. Future studies should elicit online 

sequential learning for both linguistic and non-linguistic motor stimuli to verify the locus of 

the correlation between motor sequence learning and reading ability (e.g., Francois & 

Schön, 2011). Second, the results of ROI analyses were not corrected for multiple 
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comparisons in the current exploratory study. Hence, the neuroimaging results should be 

interpreted with caution due to the risk of type-I error and ask for future replications.

To our knowledge, the present study provides the first evidence for a common neural 

network for non-linguistic sequence learning and word reading in the same individuals, as 

well as associated relations to sequence learning and reading. A neural network of visual 

motor association (the precentral area and the SMA), sequential, orthographic and linguistic 

processing (STG, insula, the fusiform gyrus and IFG), learning and memory (the putamen 

and the cerebellum) was commonly recruited during both non-linguistic sequence learning 

and reading. Activation of the right insula and the right IFGpTr was associated with 

individual differences in reading skill in both tasks, suggesting that sequential processing is 

commonly involved across motor sequence learning and retrieving graphemic/phonemic 

sequences in reading.
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Figure 1. 
Illustration of the stimulus display in the SRT task. The four lines from left to right 

correspond to the four possible locations above which the asterisk could appear.
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Figure 2. 
RTs in the ordered condition and random condition across the three runs of the SRT task as a 

function of residual Reading score (regressing out the variance of Performance IQ). The RT 

difference between the random and ordered condition in the third run significantly correlated 

with Reading score.

Hung et al. Page 14

Sci Stud Read. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Green areas indicate brain regions that were significantly active in the SRT task at the group 

level. Orange areas indicate brain regions that were significantly active in the word reading 

task at the group level. Red areas indicate brain regions that were commonly activated in 

both tasks.
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Figure 4. 
Brain regions that showed sensitivity to individual differences in reading skill in the SRT 

and word reading tasks. Beta weights for (a) the SRT task and (b) the word reading task are 

plotted as a function of residual Reading score.
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Table 1.

Results of the standardized tests and demographic information regarding the participants.

Range Mean Standard deviation

WJ reading score 73–123 102.16 11.63

WASI Performance IQ 75–139 103.43 14.87

Age 15–25 20.48 2.50
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Table 2.

Grand averaged RTs across participants in the ordered condition and random condition in the three runs of the 

SRT task. (separated by more skilled readers and less skilled readers)

Run 1 Run 2 Run 3

Ordered 469.46 444.24 434.89

Random 477.11 454.65 448.6
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