3,230 research outputs found
Channel Flow of a Tensorial Shear-Thinning Maxwell Model: Lattice Boltzmann Simulations
We introduce a nonlinear generalized tensorial Maxwell-type constitutive
equation to describe shear-thinning glass-forming fluids, motivated by a recent
microscopic approach to the nonlinear rheology of colloidal suspensions. The
model captures a nonvanishing dynamical yield stress at the glass transition
and incorporates normal-stress differences. A modified lattice-Boltzmann (LB)
simulation scheme is presented that includes non-Newtonian contributions to the
stress tensor and deals with flow-induced pressure differences. We test this
scheme in pressure-driven 2D Poiseuille flow of the nonlinear generalized
Maxwell fluid. In the steady state, comparison with an analytical solution
shows good agreement. The transient dynamics after startup and cessation of the
pressure gradient are studied; the simulation reproduces a finite stopping time
for the cessation flow of the yield-stress fluid in agreement with previous
analytical estimates
Effects of Ponderosa Pine Ecological Restoration on Forest Soils and Understory Vegetation in Northern Arizona
The human exclusion of wildfire and overgrazing by livestock since settlement have caused dramatic changes in ponderosa pine (Pinus ponderosa Dougl ex Laws) forest ecosystems. These changes include increased numbers of tree stems, reduced understory cover and diversity, and the introduction of invasive, non-native understory species. This study evaluated the coverage and species composition of understory vegetation present in the âcool-seasonâ (late spring and early summer) in a ponderosa pine forest on grazed and ungrazed plots that had undergone restoration treatments on three different soil/geologic parent material types near Flagstaff, Arizona, twelve years after tree thinning and grazing exclosure treatments were applied. Several measured soil properties, such as soil respiration and temperature, were also evaluated in this study. Species richness of âcool-seasonâ vegetation was influenced more by grazing practices than restoration treatments. Differences could be less or greater when vegetation that is active later in the season is measured. Vegetative cover was significantly influenced by restoration treatments (9.3% cover under open canopies and 6.5% under dense canopies), probably due to differences in competition for light and other resources (i.e. soil moisture and nutrients). Unlike finding by Abella et al. (2015), who studied âwarm-seasonâ vegetation, âcool-seasonâ understory cover was not influenced by soil parent material type in this study, which might suggest that differences in understory cover due to soil properties are only seen shortly after restoration treatments are applied, or the time of year vegetation is evaluated may play a role in the differences seen. Soil respiration was highest on limestone soil parent material type (3.3 g C-CO2 m-2 day-1), and soil temperature was lowest under closed canopy treatments (15°C)
Elasticity of smectic liquid crystals with focal conic domains
We study the elastic properties of thermotropic smectic liquid crystals with
focal conic domains (FCDs). After the application of the controlled preshear at
different temperatures, we independently measured the shear modulus G' and the
FCD size L. We find out that these quantities are related by the scaling
relation G' ~ \gamma_{eff}/L where \gamma_{eff} is the effective surface
tension of the FCDs. The experimentally obtained value of \gamma_{\rm eff}
shows the same scaling as the effective surface tension of the layered systems
\sqrt{KB} where K and B are the bending modulus and the layer compression
modulus, respectively. The similarity of this scaling relation to that of the
surfactant onion phase suggests an universal rheological behavior of the
layered systems with defects.Comment: 14 pages, 7 figures, accepted for publication in JPC
Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment
This review explores the use of microalgae for nutrient removal in municipal wastewater treatment, considering recent improvements in the understanding of removal mechanisms and developments of both suspended and non-suspended systems. Nutrient removal is associated to both direct and indirect uptake, with the former associated to the biomass concentration and growth environment (reactor). Importantly, direct uptake is influenced by the Nitrogen:Phosphorus content in both the cells and the surrounding wastewater, with opposite trends observed for N and P. Comparison of suspended and non-suspended systems revealed that whilst all were capable of achieving high levels of nutrient removal, only non-suspended immobilized systems could do so with reduced hydraulic retention times of less than 1 day. As microalgae are photosynthetic organisms, the metabolic processes associated with nutrient assimilation are driven by light. Optimization of light delivery remains a key area of development with examples of improved mixing in suspended systems and the use of pulsating lights to enhance light utilization and reduce costs. Recent data provide increased confidence in the use of microalgae for nutrient removal in municipal wastewater treatment, enabling effluent discharges below 1â
mgâ
Lâ1 to be met whilst generating added value in terms of bioproducts for energy production or nutrient recovery. Ultimately, the review suggests that future research should focus on non-suspended systems and the determination of the added value potential. In so doing, it is predicted that microalgae systems will be significant in the delivery of the circular economy
Revisiting Proposal-based Object Detection
This paper revisits the pipeline for detecting objects in images with
proposals. For any object detector, the obtained box proposals or queries need
to be classified and regressed towards ground truth boxes. The common solution
for the final predictions is to directly maximize the overlap between each
proposal and the ground truth box, followed by a winner-takes-all ranking or
non-maximum suppression. In this work, we propose a simple yet effective
alternative. For proposal regression, we solve a simpler problem where we
regress to the area of intersection between proposal and ground truth. In this
way, each proposal only specifies which part contains the object, avoiding a
blind inpainting problem where proposals need to be regressed beyond their
visual scope. In turn, we replace the winner-takes-all strategy and obtain the
final prediction by taking the union over the regressed intersections of a
proposal group surrounding an object. Our revisited approach comes with minimal
changes to the detection pipeline and can be plugged into any existing method.
We show that our approach directly improves canonical object detection and
instance segmentation architectures, highlighting the utility of
intersection-based regression and grouping.Comment: 10 pages, 7 figure
Theory and computation of directional nematic phase ordering
A computational study of morphological instabilities of a two-dimensional
nematic front under directional growth was performed using a Landau-de Gennes
type quadrupolar tensor order parameter model for the first-order
isotropic/nematic transition of 5CB (pentyl-cyanobiphenyl). A previously
derived energy balance, taking anisotropy into account, was utilized to account
for latent heat and an imposed morphological gradient in the time-dependent
model. Simulations were performed using an initially homeotropic
isotropic/nematic interface. Thermal instabilities in both the linear and
non-linear regimes were observed and compared to past experimental and
theoretical observations. A sharp-interface model for the study of linear
morphological instabilities, taking into account additional complexity
resulting from liquid crystalline order, was derived. Results from the
sharp-interface model were compared to those from full two-dimensional
simulation identifying the specific limitations of simplified sharp-interface
models for this liquid crystal system. In the nonlinear regime, secondary
instabilities were observed to result in the formation of defects, interfacial
heterogeneities, and bulk texture dynamics.Comment: first revisio
Nominal or Real? The Impact of Regional Price Levels on Satisfaction with Life
According to economic theory, real income, i.e., nominal income adjusted for purchasing power, should be the relevant source of life satisfaction. Previous work, however, has only studied the impact of inflation adjusted nominal income and not taken into account regional differences in purchasing power. Therefore, we use a novel data set to study how regional price levels affect satisfaction with life. The data set comprises about 7 million data points that are used to construct a price level for each of the 428 administrative districts in Germany. We estimate pooled OLS and ordered probit models that include a comprehensive set of individual level, time-varying and time-invariant control variables as well as control variables that capture district heterogeneity other than the price level. Our results show that higher price levels significantly reduce life satisfaction. Furthermore, we find that a higher price level tends to induce a larger loss in life satisfaction than a corresponding decrease in nominal income. A formal test of neutrality of money, however, does not reject neutrality of money. Our results provide an argument in favor of regional indexation of government transfer payments such as social welfare benefits
Economic precariousness: A new channel in the housing market cycle
Abstract: Demographic and institutional elements, as important drivers of the housing market, should not be neglected since it is not only financial and monetary elements that matter in the case of the housing market. In this context, one relationship, which still remains unclear, is the relationship between the housing and the labour markets. Some research has been undertaken to support the hypothesis that high rates of
homeownership lead to high unemployment via increases in the reservation wage. However, further research is needed to address the possible implications of the institutional settings of the labour market in the dynamics of the housing market. The aim of this paper is to bring some light on the link between both markets. In particular, this contribution explains how the housing cycle could be âamplifiedâ via a new
channel, i.e. economic precariousness, which is closely related to job insecurity. Subsequently, we provide evidence in the case of five developed economies, Ireland, the Netherlands, Spain, the United Kingdom and the United States, over the period 1985-2013.Not appicabl
- âŠ