13,842 research outputs found

    Shell model description of the 14C dating beta decay with Brown-Rho-scaled NN interactions

    Full text link
    We present shell model calculations for the beta-decay of the 14C ground state to the 14N ground state, treating the states of the A=14 multiplet as two 0p holes in an 16O core. We employ low-momentum nucleon-nucleon (NN) interactions derived from the realistic Bonn-B potential and find that the Gamow-Teller matrix element is too large to describe the known lifetime. By using a modified version of this potential that incorporates the effects of Brown-Rho scaling medium modifications, we find that the GT matrix element vanishes for a nuclear density around 85% that of nuclear matter. We find that the splitting between the (J,T)=(1+,0) and (J,T)=(0+,1) states in 14N is improved using the medium-modified Bonn-B potential and that the transition strengths from excited states of 14C to the 14N ground state are compatible with recent experiments.Comment: 4 pages, 5 figures Updated to include referee comments/suggestion

    Distal occurrence of mid-Holocene Whakatane Tephra on the Chatham Islands, New Zealand, and potential for cryptotephra studies

    Get PDF
    The Whakatane Tephra, a rhyolitic tephra erupted ca. 5500 cal. BP from Okataina Volcanic Centre, central North Island, has been identified on the Chatham Islands which lie ˜900 km east of Christchurch, New Zealand. The visible tephra layer, ˜5 mm in thickness and preserved within peat on Pitt Island, was identified using both radiocarbon dating and analysis of glass shards by electron microprobe. Whakatane Tephra is the first Holocene tephra to be identified on the Chatham Islands, and it is the most distal Holocene tephra yet recorded in the New Zealand region, being ˜850 km from source. The Pitt Island occurrence extends the tephra's dispersal area markedly, by an order of magnitude, possibly to ˜300,000 km2. An estimated dispersal index (D) of approximately 105 km2 indicates that the eruption generated a very high plinian column, possibly exceeding ˜30 km in height, with strong winds blowing the ash plume southeastwards. This new discovery of distal Whakatane Tephra as a thin but visible layer strongly implies that cryptotephras are likely to be preserved on the Chatham Islands and within adjacent ocean floor sediments. Therefore the potential exists to develop enhanced cryptotephrostratigraphic records from these distal areas, which in turn would help facilitate precise correlation via tephrochronology of palaeoenvironmental records (such as NZ-INTIMATE) from mainland New Zealand, the southwest Pacific Ocean, and the Chatham Islands

    Structure of the lightest tin isotopes

    Full text link
    We link the structure of nuclei around 100^{100}Sn, the heaviest doubly magic nucleus with equal neutron and proton numbers (N=Z=50N=Z=50), to nucleon-nucleon (NNNN) and three-nucleon (NNNNNN) forces constrained by data of few-nucleon systems. Our results indicate that 100^{100}Sn is doubly magic, and we predict its quadrupole collectivity. We present precise computations of 101^{101}Sn based on three-particle--two-hole excitations of 100^{100}Sn, and reproduce the small splitting between the lowest Jπ=7/2+J^\pi=7/2^+ and 5/2+5/2^+ states. Our results are consistent with the sparse available data.Comment: 8 pages, 4 figure

    Rheological properties, shape oscillations, and coalescence of liquid drops with surfactants

    Get PDF
    A method was developed to deduce dynamic interfacial properties of liquid drops. The method involves measuring the frequency and damping of free quadrupole oscillations of an acoustically levitated drop. Experimental results from pure liquid-liquid systems agree well with theoretical predictions. Additionally, the effects of surfactants is considered. Extension of these results to a proposed microgravity experiment on the drop physics module (DPM) in USML-1 are discussed. Efforts are also underway to model the time history of the thickness of the fluid layer between two pre-coalescence drops, and to measure the film thickness experimentally. Preliminary results will be reported, along with plans for coalescence experiments proposed for USML-1

    A Geometrical Method of Decoupling

    Full text link
    The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries - like midplane symmetrie - are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane and (under certain circumstances) the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as for instance the method of Teng and Edwards. In a preceeding paper it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all thinkable cases. Hence a systematic derivation of a more general treatment seemed advisable. In a second paper the author suggested the use of real Dirac matrices as basic tools to coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. It is shown that this algebraic decoupling is closely related to a geometric "decoupling" by the orthogonalization of the vectors E\vec E, B\vec B and P\vec P, that were introduced with the so-called "electromechanical equivalence". We present a structure-preserving block-diagonalization of symplectic or Hamiltonian matrices, respectively. When used iteratively, the decoupling algorithm can also be applied to n-dimensional systems and requires O(n2){\cal O}(n^2) iterations to converge to a given precision.Comment: 13 pages, 1 figur

    Leading the evaluation of institutional online learning environments for quality enhancement in times of change

    Get PDF
    This paper reports on findings from a nationally funded project which aims to design and implement a quality management framework for online learning environments (OLEs). Evaluation is a key component of any quality management system and it is this aspect of the framework that is the focus of this paper. In developing the framework initial focus groups were conducted at the five participating institutions. These revealed that, although regarded as important, there did not appear to be a shared understanding of the nature and purpose of evaluation. A second series of focus groups revealed there were multiple perspectives arising from those with a vested interest in online learning. These perspectives will be outlined. Overall, how evaluation was undertaken was highly variable within and across the five institutions reflecting where they were at in relation to the development of their OLE

    Discrepancy between experimental and theoretical β\beta-decay rates resolved from first principles

    Full text link
    β\beta-decay, a process that changes a neutron into a proton (and vice versa), is the dominant decay mode of atomic nuclei. This decay offers a unique window to physics beyond the standard model, and is at the heart of microphysical processes in stellar explosions and the synthesis of the elements in the Universe. For 50 years, a central puzzle has been that observed β\beta-decay rates are systematically smaller than theoretical predictions. This was attributed to an apparent quenching of the fundamental coupling constant gAg_A \simeq 1.27 in the nucleus by a factor of about 0.75 compared to the β\beta-decay of a free neutron. The origin of this quenching is controversial and has so far eluded a first-principles theoretical understanding. Here we address this puzzle and show that this quenching arises to a large extent from the coupling of the weak force to two nucleons as well as from strong correlations in the nucleus. We present state-of-the-art computations of β\beta-decays from light to heavy nuclei. Our results are consistent with experimental data, including the pioneering measurement for 100^{100}Sn. These theoretical advances are enabled by systematic effective field theories of the strong and weak interactions combined with powerful quantum many-body techniques. This work paves the way for systematic theoretical predictions for fundamental physics problems. These include the synthesis of heavy elements in neutron star mergers and the search for neutrino-less double-β\beta-decay, where an analogous quenching puzzle is a major source of uncertainty in extracting the neutrino mass scale.Comment: 20 pages, 18 figure
    corecore