249 research outputs found

    Modulation of omv production by the lysis module of the dlp12 defective prophage of Escherichia coli k12

    Get PDF
    Outer membrane vesicles (OMVs) are nanostructures mostly produced by blebbing of the outer membrane in Gram negative bacteria. They contain biologically active proteins and perform a variety of processes. OMV production is also a typical response to events inducing stress in the bacterial envelope. In these cases, hypervesiculation is regarded as a strategy to avoid the dangerous accumulation of undesired products within the periplasm. Several housekeeping genes influence the biogenesis of OMVs, including those correlated with peptidoglycan and cell wall dynamics. In this work, we have investigated the relationship between OMV production and the lysis module of the E. coli DLP12 cryptic prophage. This module is an operon encoding a holin, an endolysin and two spannins, and is known to be involved in cell wall maintenance. We find that deleting the lysis module increases OMV production, suggesting that during evolution this operon has been domes-ticated to regulate vesiculation, likely through the elimination of non‐recyclable peptidoglycan frag-ments. We also show that the expression of the lysis module is negatively regulated by environmental stress stimuli as high osmolarity, low pH and low temperature. Our data further highlight how defective prophages finely contribute to bacterial host fitness

    Short GRBs at the dawn of the gravitational wave era

    Get PDF
    We derive the luminosity function and redshift distribution of short Gamma Ray Bursts (SGRBs) using (i) all the available observer-frame constraints (i.e. peak flux, fluence, peak energy and duration distributions) of the large population of Fermi SGRBs and (ii) the rest-frame properties of a complete sample of Swift SGRBs. We show that a steep ϕ(L)∝L−a\phi(L)\propto L^{-a} with a>2.0 is excluded if the full set of constraints is considered. We implement a Monte Carlo Markov Chain method to derive the ϕ(L)\phi(L) and ψ(z)\psi(z) functions assuming intrinsic Ep-Liso and Ep-Eiso correlations or independent distributions of intrinsic peak energy, luminosity and duration. To make our results independent from assumptions on the progenitor (NS-NS binary mergers or other channels) and from uncertainties on the star formation history, we assume a parametric form for the redshift distribution of SGRBs. We find that a relatively flat luminosity function with slope ~0.5 below a characteristic break luminosity ~3×1052\times10^{52} erg/s and a redshift distribution of SGRBs peaking at z~1.5-2 satisfy all our constraints. These results hold also if no Ep-Liso and Ep-Eiso correlations are assumed. We estimate that, within ~200 Mpc (i.e. the design aLIGO range for the detection of GW produced by NS-NS merger events), 0.007-0.03 SGRBs yr−1^{-1} should be detectable as gamma-ray events. Assuming current estimates of NS-NS merger rates and that all NS-NS mergers lead to a SGRB event, we derive a conservative estimate of the average opening angle of SGRBs: Ξjet\theta_{jet}~3-6 deg. Our luminosity function implies an average luminosity L~1.5×1052\times 10^{52} erg/s, nearly two orders of magnitude higher than previous findings, which greatly enhances the chance of observing SGRB "orphan" afterglows. Efforts should go in the direction of finding and identifying such orphan afterglows as counterparts of GW events.Comment: 13 pages, 5 figures, 2 tables. Accepted for publication in Astronomy & Astrophysics. Figure 5 and angle ranges corrected in revised versio

    Technical Specification for the CLIC Two-Beam Module

    Get PDF
    A high-energy (0.5-3 TeV centre-of-mass), highluminosity Compact Linear Collider (CLIC) is being studied at CERN [1]. The CLIC main linacs, 21-km long each, are composed of 2-m long two beam modules. This paper presents their current layout, the main requirements for the different sub-systems (alignment, supporting, stabilization, cooling and vacuum) as well as the status of their integration

    A nanoporous surface is essential for glomerular podocyte differentiation in three-dimensional culture.

    Get PDF
    Although it is well recognized that cell-matrix interactions are based on both molecular and geometrical characteristics, the relationship between specific cell types and the three-dimensional morphology of the surface to which they are attached is poorly understood. This is particularly true for glomerular podocytes - the gatekeepers of glomerular filtration - which completely enwrap the glomerular basement membrane with their primary and secondary ramifications. Nanotechnologies produce biocompatible materials which offer the possibility to build substrates which differ only by topology in order to mimic the spatial organization of diverse basement membranes. With this in mind, we produced and utilized rough and porous surfaces obtained from silicon to analyze the behavior of two diverse ramified cells: glomerular podocytes and a neuronal cell line used as a control. Proper differentiation and development of ramifications of both cell types was largely influenced by topographical characteristics. Confirming previous data, the neuronal cell line acquired features of maturation on rough nanosurfaces. In contrast, podocytes developed and matured preferentially on nanoporous surfaces provided with grooves, as shown by the organization of the actin cytoskeleton stress fibers and the proper development of vinculin-positive focal adhesions. On the basis of these findings, we suggest that in vitro studies regarding podocyte attachment to the glomerular basement membrane should take into account the geometrical properties of the surface on which the tests are conducted because physiological cellular activity depends on the three-dimensional microenvironment

    Intrauterine versus post-mortem magnetic resonance in second trimester termination of pregnancy for central nervous system abnormalities

    Get PDF
    Objective: To evaluate if limiting factors of intrauterine magnetic resonance imaging (iuMRI) performed in the early second trimester of pregnancy (19\u201323 weeks) affect its accuracy in comparison to post-mortem MRI (pmMRI) in fetuses that underwent termination of pregnancy (TOP) for central nervous system (CNS) defects. Study design: This is a secondary analysis of a 10 years prospective observational study. Cases of TOP < 23 weeks for CNS malformation that had undergone neurosonography (NSG), iuMRI, pmMRI and autopsy were included. The agreement between iuMRI and pmMRI was calculated. The autopsy represented the gold-standard. Results: Overall, 143 TOPs for fetal congenital anomaly underwent the post-mortem diagnostic protocol. Of these, 31 cases underwent iuMRI and pmMRI for CNS abnormality. Three cases were excluded due to brain autolysis at autopsy. Corpus callosum defects were the most represented (16/28; 57 %). In only one case of posterior fossa defect, pmMRI identified the presence of vermian hypoplasia not diagnosed at iuMRI. In 2 cases (7%), iuMRI added clinically relevant additional findings to NSG, that were posteriorly confirmed by pmMRI. Conclusions: The study shows that, at 19\u201323 weeks and for CNS defects, limiting factors that might influence the performance of iuMRI have little influence on iuMRI accuracy. This finding is particularly important for professionals who work in countries with legal bound for TOP in the early second trimester

    HMGA1 promotes breast cancer angiogenesis supporting the stability, nuclear localization and transcriptional activity of FOXM1

    Get PDF
    Background Breast cancer is the most common malignancy in women worldwide. Among the breast cancer subtypes, triple-negative breast cancer (TNBC) is the most aggressive and the most difficult to treat. One of the master regulators in TNBC progression is the architectural transcription factor HMGA1. This study aimed to further explore the HMGA1 molecular network to identify molecular mechanisms involved in TNBC progression. Methods RNA from the MDA-MB-231 cell line, silenced for HMGA1 expression, was sequenced and, with a bioinformatic analysis, molecular partners HMGA1 could cooperate with in regulating common downstream gene networks were identified. Among the putative partners, the FOXM1 transcription factor was selected. The relationship occurring between HMGA1 and FOXM1 was explored by qRT-PCR, co-immunoprecipitation and protein stability assays. Subsequently, the transcriptional activity of HMGA1 and FOXM1 was analysed by luciferase assay on the VEGFA promoter. The impact on angiogenesis was assessed in vitro, evaluating the tube formation ability of endothelial cells exposed to the conditioned medium of MDA-MB-231 cells silenced for HMGA1 and FOXM1 and in vivo injecting MDA-MB-231 cells, silenced for the two factors, in zebrafish larvae. Results Here, we discover FOXM1 as a novel molecular partner of HMGA1 in regulating a gene network implicated in several breast cancer hallmarks. HMGA1 forms a complex with FOXM1 and stabilizes it in the nucleus, increasing its transcriptional activity on common target genes, among them, VEGFA, the main inducer of angiogenesis. Furthermore, we demonstrate that HMGA1 and FOXM1 synergistically drive breast cancer cells to promote tumor angiogenesis both in vitro in endothelial cells and in vivo in a zebrafish xenograft model. Moreover, using a dataset of breast cancer patients we show that the co-expression of HMGA1, FOXM1 and VEGFA is a negative prognostic factor of distant metastasis-free survival and relapse-free survival. Conclusions This study reveals FOXM1 as a crucial interactor of HMGA1 and proves that their cooperative action supports breast cancer aggressiveness, by promoting tumor angiogenesis. Therefore, the possibility to target HMGA1/FOXM1 in combination should represent an attractive therapeutic option to counteract breast cancer angiogenesis

    Gadolinium tissue deposition in the periodontal ligament of mice with reduced renal function exposed to Gd-based contrast agents

    Get PDF
    Gadolinium deposition in tissue is linked to nephrogenic systemic fibrosis (NSF): a rare disorder occurring in patients with severe chronic kidney disease and associated with administration of Gd-based contrast agents (GBCAs) for Magnetic Resonance Imaging (MRI). It is suggested that the GBCAs prolonged permanence in blood in these patients may result in a Gd precipitation in peripheral or central organs, where it initiates a fibrotic process. In this study we investigated new sites of retention/precipitation of Gd in a mouse model of renal disease (5/6 nephrectomy) receiving two doses (closely after each other) of a linear GBCA. Two commercial GBCAs (Omniscan\uae and Magnevist\uae) were administered at doses slightly higher than those used in clinical practice (0.7 mmol/kg body weight, each). The animals were sacrificed one month after the last administration and the explanted organs (kidney, liver, femur, dorsal skin, teeth) were analysed by X-ray fluorescence (XRF) at two synchrotron facilities. The XRF analysis with a millimetre-sized beam at the SYRMEP beamline (Elettra, Italy) produced no detectable levels of Gd in the examined tissues, with the notable exception of the incisors of the nephrectomised mice. The XRF analyses at sub-micron resolution performed at ID21 (ESRF, France) allowed to clearly localize Gd in the periodontal ligaments of teeth both from Omniscan\uae and Magnevist\uae treated nephrectomised mice. The latter results were further confirmed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The study prompts that prolonged permanence of GBCAs in blood may result in Gd retention in this particular muscular tissue, opening possibilities for diagnostic applications at this level when investigating Gd-related toxicities
    • 

    corecore