2,094 research outputs found

    Uncoupled Hartree-Fock calculations of the polarizability and hyperpolarizabilities of nitrophenols

    Get PDF
    The polarizability and hyperpolarizabilities of nitrophenols as model compounds for studying nonlinear optics have been investigated at the Hartree-Fock level of approximation by means of the Dalgarno Uncoupled Hartree-Fock (DUHF) or Sum Over Orbitals (SOO) method. The additive character and the charge transfer effects in α,β,γ and have been analyzed in terms of the δ and π molecular orbital contributions, the contribution of the individual π molecular orbitals, and the contribution of the highest occupied and the lowest unoccupied\ud molecular orbitals. Within the SOO approach, the reliability of the Two-Level Model has been tested and the influence of the rotation of the nitro group and of the presence of the intramolecular hydrogen bonding in ortho-nitrophenol have been studied. The results show that the present method is a reliable and efficient tool for the prediction of trends in the molecular polarizability and hyperpolarizabilities of large molecule

    Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit

    Get PDF
    Changes in carbohydrate metabolism during grape berry development play a central role in shaping the final composition of the fruit. The present work aimed to identify metabolic switches during grape development and to provide insights into the timing of developmental regulation of carbohydrate metabolism. Metabolites from central carbon metabolism were measured using high-pressure anion-exchange chromatography coupled to tandem mass spectrometry and enzymatic assays during the development of grape berries from either field-grown vines or fruiting cuttings grown in the greenhouse. Principal component analysis readily discriminated the various stages of berry development, with similar trajectories for field-grown and greenhouse samples. This showed that each stage of fruit development had a characteristic metabolic profile and provided compelling evidence that the fruit-bearing cuttings are a useful model system to investigate regulation of central carbon metabolism in grape berry. The metabolites measured showed tight coordination within their respective pathways, clustering into sugars and sugar-phosphate metabolism, glycolysis, and the tricarboxylic acid cycle. In addition, there was a pronounced shift in metabolism around veraison, characterized by rapidly increasing sugar levels and decreasing organic acids. In contrast, glycolytic intermediates and sugar phosphates declined before veraison but remained fairly stable post-veraison. In summary, these detailed and comprehensive metabolite analyses revealed the timing of important switches in primary carbohydrate metabolism, which could be related to transcriptional and developmental changes within the berry to achieve an integrated understanding of grape berry development. The results are discussed in a meta-analysis comparing metabolic changes in climacteric versus non-climacteric fleshy fruits

    Improved automatic discovery of subgoals for options in hierarchical

    Get PDF
    Options have been shown to be a key step in extending reinforcement learning beyond low-level reactionary systems to higher-level, planning systems. Most of the options research involves hand-crafted options; there has been only very limited work in the automated discovery of options. We extend early work in automated option discovery with a flexible and robust method.Facultad de Informátic

    Improved automatic discovery of subgoals for options in hierarchical

    Get PDF
    Options have been shown to be a key step in extending reinforcement learning beyond low-level reactionary systems to higher-level, planning systems. Most of the options research involves hand-crafted options; there has been only very limited work in the automated discovery of options. We extend early work in automated option discovery with a flexible and robust method.Facultad de Informátic

    Magneto-optical Kerr effect in Eu1xCaxB6Eu_{1-x}Ca_{x}B_{6}

    Full text link
    We have measured the magneto-optical Kerr rotation of ferromagnetic Eu1xCaxB6Eu_{1-x}Ca_{x}B_{6} with x=0.2 and 0.4, as well as of YbB6YbB_{6} serving as the non-magnetic reference material. As previously for EuB6EuB_{6}, we could identify a feature at 1 eVeV in the Kerr response which is related with electronic transitions involving the localized 4f electron states. The absence of this feature in the data for YbB6YbB_{6} confirms the relevance of the partially occupied 4f states in shaping the magneto-optical features of EuEu-based hexaborides. Disorder by CaCa-doping broadens the itinerant charge carrier contribution to the magneto-optical spectra

    Do prestigious Spanish scholarly book publishers have more teaching impact?

    Get PDF
    Purpose The purpose of this paper is to assess the educational value of prestigious and productive Spanish scholarly publishers based on mentions of their books in online scholarly syllabi. Design/methodology/approach Syllabus mentions of 15,117 books from 27 publishers were searched for, manually checked and compared with Microsoft Academic (MA) citations. Findings Most books published by Ariel, Síntesis, Tecnos and Cátedra have been mentioned in at least one online syllabus, indicating that their books have consistently high educational value. In contrast, few books published by the most productive publishers were mentioned in online syllabi. Prestigious publishers have both the highest educational impact based on syllabus mentions and the highest research impact based on MA citations. Research limitations/implications The results might be different for other publishers. The online syllabus mentions found may be a small fraction of the syllabus mentions of the sampled books. Practical implications Authors of Spanish-language social sciences and humanities books should consider general prestige when selecting a publisher if they want educational uptake for their work. Originality/value This is the first study assessing book publishers based on syllabus mentions

    Defining the molecular targets of cerebellar PKG by quantitative (phospho)proteomics in a knock-out mouse model

    Get PDF

    Dorsal root ganglion axon bifurcation tolerates increased cyclic GMP levels: the role of phosphodiesterase 2A and scavenger receptor Npr3

    Get PDF
    A cyclic GMP (cGMP) signaling pathway, comprising C-type natriuretic peptide (CNP), its guanylate cyclase receptor Npr2, and cGMP-dependent protein kinase I, is critical for the bifurcation of dorsal root ganglion (DRG) and cranial sensory ganglion axons when entering the mouse spinal cord and the hindbrain respectively. However, the identity and functional relevance of phosphodiesterases (PDEs) that degrade cGMP in DRG neurons are not completely understood. Here, we asked whether regulation of the intracellular cGMP concentration by PDEs modulates the branching of sensory axons. Real-time imaging of cGMP with a genetically encoded fluorescent cGMP sensor, RT-PCR screens, in situ hybridization, and immunohistology combined with the analysis of mutant mice identified PDE2A as the major enzyme for the degradation of CNP-induced cGMP in embryonic DRG neurons. Tracking of PDE2A-deficient DRG sensory axons in conjunction with cGMP measurements indicated that axon bifurcation tolerates increased cGMP concentrations. As we found that the natriuretic peptide scavenger receptor Npr3 is expressed by cells associated with dorsal roots but not in DRG neurons itself at early developmental stages, we analyzed axonal branching in the absence of Npr3. In Npr3-deficient mice, the majority of sensory axons showed normal bifurcation, but a small population of axons (13%) was unable to form T-like branches and generated turns in rostral or caudal directions only. Taken together, this study shows that sensory axon bifurcation is insensitive to increases of CNP-induced cGMP levels and Npr3 does not have an important scavenging function in this axonal system

    The receptor guanylyl cyclase Npr2 is essential for sensory axon bifurcation within the spinal cord

    Get PDF
    Sensory axonal projections into the spinal cord display a highly stereotyped pattern of T- or Y-shaped axon bifurcation at the dorsal root entry zone (DREZ). Here, we provide evidence that embryonic mice with an inactive receptor guanylyl cyclase Npr2 or deficient for cyclic guanosine monophosphate-dependent protein kinase I (cGKI) lack the bifurcation of sensory axons at the DREZ, i.e., the ingrowing axon either turns rostrally or caudally. This bifurcation error is maintained to mature stages. In contrast, interstitial branching of collaterals from primary stem axons remains unaffected, indicating that bifurcation and interstitial branching are processes regulated by a distinct molecular mechanism. At a functional level, the distorted axonal branching at the DREZ is accompanied by reduced synaptic input, as revealed by patch clamp recordings of neurons in the superficial layers of the spinal cord. Hence, our data demonstrate that Npr2 and cGKI are essential constituents of the signaling pathway underlying axonal bifurcation at the DREZ and neuronal connectivity in the dorsal spinal cord
    corecore