10 research outputs found

    Levels of carbonaceous aerosols in remote, rural, urban and industrial sites of Spain

    Get PDF
    Comunicación presentada en: 2012 European Aerosol Conference (EAC-2012), B-WG01S2P30, celebrada del 2 al 7 de septiembre de 2012 en Granada.This work was funded by the Spanish Ministry of Science and Innovation (VAMOS CGL2010-19464/CLI; DAURE CGL2007-30502-E/CLI, GRACCIE- CSD2007-00067), the Ministry of the Economy Competitivity, the Generalitat de Catalunya, Gobierno de Canarias and Junta de Andalucía

    Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy

    Get PDF
    We interpret here the variability of levels of carbonaceous aerosols based on a 12 yr database from 78 monitoring stations across Spain specially compiled for this article. Data did not evidence any spatial trends of carbonaceous aerosols across the country. Conversely, results show marked differences in average concentrations from the cleanest, most remote sites (around 1 μg m-3 of non-mineral carbon (nmC), mostly made of organic carbon (OC) with very little elemental carbon (EC), around 0.1 μg m-3; OC/EC Combining double low line 12-15), to the highly polluted major cities (8-10 μg m-3 of nmC; 3-4 μg m-3 of EC; 4-5 μg m-3 of OC; OC/EC Combining double low line 1-2). Thus, urban (and very specific industrial) pollution was found to markedly increase levels of carbonaceous aerosols in Spain, with much lower impact of biomass burning and of biogenic emissions. Correlations between yearly averaged OC/EC and EC concentrations adjust very well to a potential equation (OC Combining double low line 3.37 EC0.326, R2 Combining double low line 0.8). A similar equation is obtained when including average concentrations obtained at other European sites (OC Combining double low line 3.60EC0.491, R2 Combining double low line 0.7). A clear seasonal variability in OC and EC concentrations was detected. Both OC and EC concentrations were higher during winter at the traffic and urban sites, but OC increased during the warmer months at the rural sites. Hourly equivalent black carbon (EBC) concentrations at urban sites accurately depict road traffic contributions, varying with distance from road, traffic volume and density, mixing-layer height and wind speed. Weekday urban rush-hour EBC peaks are mimicked by concentrations of primary gaseous emissions from road traffic, whereas a single midday peak is characteristic of remote and rural sites. Decreasing annual trends for carbonaceous aerosols were observed between 1999 and 2011 at a large number of stations, probably reflecting the impact of the EURO4 and EURO5 standards in reducing the diesel PM emissions. This has resulted in some cases in an increasing trend for NO2/(OC+ EC) ratios as these standards have been much less effective for the abatement of NOx exhaust emissions in passenger diesel cars. This study concludes that EC, EBC, and especially nmC and OC+ EC are very good candidates for new air quality standards since they cover both emission impact and health-related issues.This study was supported by the Ministry of Agriculture, Food and the Environment of Spain, the Ministry of Economy and Competitivity (MINECO) of Spain and FEDER funds under the projects VAMOS (CGL2010-19464/CLI), PRISMA (CGL2012-39623-C02-01), GRACCIE (CSD 200700067), POLLINDUST (CGL2011-26259) and UHU (CGL201128025); and by AGAUR-Generalitat de Catalunya (2009 SGR 00008) and LIFE+ AIRUSE (LIFE11-ENV/ES/000584). The Montseny site forms part of the ACTRIS network (European Union Seventh Framework Programme (FP7/2007-2013) project no. 262254), formerly EUSAAR (EUSAAR R113-CT-2006-026140). Funding was also received for the Andaluc´ıa sites from projects 2007-RNM027329 and 2011-RNM7800 (Department of Innovation Science and Enterprise, Andalusia Autonomous Government) M. C. Minguillón was funded by the JAE-Doc CSIC programme, co-funded by the European Social Fund (ESF).publishe

    Methodology for measuring environmental health within Europe. Health Risk from Environmental Pollution Levels in Urban Systems (HEREPLUS)

    No full text
    Background: The European Commission funds a European research project titled "Health Risk from Environmental Pollution Levels in Urban Systems" (HEREPLUS) that focuses on environmental health within Europe. The HEREPLUS project was presented at the 16th EUPHA conference in Lisbon in November 2008 within a workshop named "The assessment of the effect of air pollution on population and environmental health: the integration of epidemiology and geographical information system (GIS)". Methods: The HEREPLUS project aims to measure the correlation between air pollution (especially ozone and particulate matter), meteorology, vegetation and human health in four European cities (Rome, Madrid, Athens and Dresden) by using a Geoinformation System to develop risk maps and subsequently guidelines to reduce air pollution and number of diseases. Results: The project started in September 2008 and a large, structured, relational database has been developed and completed. A literature review including national as well as international scientific literature goes on and will be completed in April 2009. Final results will be presented and published in 2011. Conclusions: Detailed scientific knowledge is important and needed to implement environmental programmes with the overall aim to protect human population against environmental related diseases

    Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy [Discussion paper]

    No full text
    We interpret here the variability of levels of carbonaceous aerosols based on a 12 yr database from 78 monitoring stations across Spain specially compiled for this article. Data did not evidence any spatial trends of carbonaceous aerosols across the country. Conversely, results show marked differences in average concentrations from the cleanest, most remote sites (around 1 μg m−3 of non-mineral carbon (nmC), mostly made of organic carbon (OC) with very little elemental carbon (EC), around 0.1 μg m−3; OC / EC = 12–15), to the highly polluted major cities (8–10 μg m−3 of nmC; 3–4 μg m−3 of EC; 4–5 μg m−3 of OC; OC / EC = 1–2).This study was supported by the Ministry of Agriculture, Food and the Environment of Spain, the Ministry of Economy and Competitivity (MINECO) of Spain and FEDER funds under the projects VAMOS (CGL2010-19464/CLI), PRISMA (CGL2012-39623-C02-01), GRACCIE (CSD 2007- 00067), POLLINDUST (CGL2011-26259) and UHU (CGL2011- 28025); and by AGAUR-Generalitat de Catalunya (2009 SGR 00008) and LIFE + AIRUSE (LIFE11-ENV/ES/000584). The Montseny site forms part of the ACTRIS network (European Union Seventh Framework Programme (FP7/2007-2013) project no. 262254), formerly EUSAAR (EUSAAR R113-CT-2006-026140). Funding was also received for the Andalucía sites from projects 2007-RNM027329 and 2011-RNM7800 (Department of Innovation Science and Enterprise, Andalusia Autonomous Government)

    ACCELERATE: A Patient-Powered Natural History Study Design Enabling Clinical and Therapeutic Discoveries in a Rare Disorder

    No full text
    Geographically dispersed patients, inconsistent treatment tracking, and limited infrastructure slow research for many orphan diseases. We assess the feasibility of a patient-powered study design to overcome these challenges for Castleman disease, a rare hematologic disorder. Here, we report initial results from the ACCELERATE natural history registry. ACCELERATE includes a traditional physician-reported arm and a patient-powered arm, which enables patients to directly contribute medical data and biospecimens. This study design enables successful enrollment, with the 5-year minimum enrollment goal being met in 2 years. A median of 683 clinical, laboratory, and imaging data elements are captured per patient in the patient-powered arm compared with 37 in the physician-reported arm. These data reveal subgrouping characteristics, identify off-label treatments, support treatment guidelines, and are used in 17 clinical and translational studies. This feasibility study demonstrates that the direct-to-patient design is effective for collecting natural history data and biospecimens, tracking therapies, and providing critical research infrastructure. Pierson et al. describe the feasibility of a patient-powered natural history registry for studying Castleman disease. They pair a traditional registry with a patient-powered approach, in which patients self-enroll and data collection is centralized. Clinical insights support treatment guidelines, and de-identified linkage to a biobank enables translational discoveries

    Applications of Algal Polysaccharides and Derivatives in Therapeutic and Agricultural Fields

    No full text
    corecore