899 research outputs found

    Shot Noise Enhancement in Resonant Tunneling Structures in a Magnetic Field

    Full text link
    We have observed that the shot noise of tunnel current, I, in GaSb-AlSb-InAs-AlSb-GaSb double-barrier structure under a magnetic field can exceed 2qI. The measurements were done at T=4K in fields up to 5T parallel to the current. The noise enhancement occurred at each of the several negative-differential conductance regions induced by the tunneling of holes through Landau levels in the InAs quantum well. The amount of the enhancement increased with the strength of the negative conductance and reached values up to 8qI. These results are explained qualitatively by fluctuations of the density of states in the well, but point out the need for a detailed theory of shot noise enhancement in resonant tunneling devices.Comment: 4 pages, RevTex, 3 figure

    Achilles tendons from decorin- and biglycan-null mouse models have inferior mechanical and structural properties predicted by an image-based empirical damage model.

    Get PDF
    Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn(-/-)) and biglycan-null (Bgn(-/-)) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice

    Particle Acceleration in three dimensional Reconnection Regions: A New Test Particle Approach

    Full text link
    Magnetic Reconnection is an efficient and fast acceleration mechanism by means of direct electric field acceleration parallel to the magnetic field. Thus, acceleration of particles in reconnection regions is a very important topic in plasma astrophysics. This paper shows that the conventional analytical models and numerical test particle investigations can be misleading concerning the energy distribution of the accelerated particles, since they oversimplify the electric field structure by the assumption that the field is homogeneous. These investigations of the acceleration of charged test particles are extended by considering three-dimensional field configurations characterized by localized field-aligned electric fields. Moreover, effects of radiative losses are discussed. The comparison between homogeneous and inhomogeneous electric field acceleration in reconnection regions shows dramatic differences concerning both, the maximum particle energy and the form of the energy distribution.Comment: 11 pages, 21 figure

    X-rays in the Orion Nebula Cluster: Constraints on the origins of magnetic activity in pre-main sequence stars

    Get PDF
    A recent Chandra/ACIS observation of the Orion Nebula Cluster detected 1075 sources (Feigelson et al. 2002), providing a uniquely large and well-defined sample to study the dependence of magnetic activity on bulk properties for stars descending the Hayashi tracks. The following results are obtained: (1) X-ray luminosities L_t in the 0.5-8 keV band are strongly correlated with bolometric luminosity with = -3.8 for stars with masses 0.7<M<2 Mo, an order of magnitude below the main sequence saturation level; (2) the X-ray emission drops rapidly below this level in some or all stars with 2<M<3 Mo; (3) the presence or absence of infrared circumstellar disks has no apparent relation to X-ray levels; and (4) X-ray luminosities exhibit a slight rise as rotational periods increase from 0.4 to 20 days. This last finding stands in dramatic contrast to the strong anticorrelation between X-rays and period seen in main sequence stars. The absence of a strong X-ray/rotation relationship in PMS stars, and particularly the high X-ray values seen in some very slowly rotating stars, is a clear indication that the mechanisms of magnetic field generation differ from those operating in main sequence stars. The most promising possibility is a turbulent dynamo distributed throughout the deep convection zone, but other models such as alpha-Omega dynamo with `supersaturation' or relic core fields are not immediately excluded. The drop in magnetic activity in intermediate-mass stars may reflect the presence of a significant radiative core. The evidence does not support X-ray production in large-scale star-disk magnetic fields.Comment: 51 pages, 8 figures. To appear in the Astrophysical Journa

    X-Ray flares in Orion Young Stars. II. Flares, Magnetospheres, and Protoplanetary Disks

    Full text link
    We study the properties of powerful X-ray flares from 161 pre-main sequence (PMS) stars observed with the Chandra X-ray Observatory in the Orion Nebula region. Relationships between flare properties, protoplanetary disks and accretion are examined in detail to test models of star-disk interactions at the inner edge of the accretion disks. Previous studies had found no differences in flaring between diskfree and accreting systems other than a small overall diminution of X-ray luminosity in accreting systems. The most important finding is that X-ray coronal extents in fast-rotating diskfree stars can significantly exceed the Keplerian corotation radius, whereas X-ray loop sizes in disky and accreting systems do not exceed the corotation radius. This is consistent with models of star-disk magnetic interaction where the inner disk truncates and confines the PMS stellar magnetosphere. We also find two differences between flares in accreting and diskfree PMS stars. First, a subclass of super-hot flares with peak plasma temperatures exceeding 100 MK are preferentially present in accreting systems. Second, we tentatively find that accreting stars produce flares with shorter durations. Both results may be consequences of the distortion and destabilization of the stellar magnetosphere by the interacting disk. Finally, we find no evidence that any flare types, even slow-rise flat-top flares are produced in star-disk magnetic loops. All are consistent with enhanced solar long-duration events with both footprints anchored in the stellar surface.Comment: Accepted for publication in ApJ (07/17/08); 46 pages, 14 figures, 2 table

    Rotation and X-ray emission from protostars

    Full text link
    The ASCA satellite has recently detected variable hard X-ray emission from two Class I protostars in the rho Oph cloud, YLW15 (IRS43) and WL6, with a characteristic time scale ~20h. In YLW15, the X-ray emission is in the form of quasi-periodic energetic flares, which we explain in terms of strong magnetic shearing and reconnection between the central star and the accretion disk. In WL6, X-ray flaring is rotationally modulated, and appears to be more like the solar-type magnetic activity ubiquitous on T Tauri stars. We find that YLW15 is a fast rotator (near break-up), while WL6 rotates with a significantly longer period. We derive a mass M_\star ~ 2 M_\odot and \simlt 0.4 M_\odot for the central stars of YLW15 and WL6 respectively. On the long term, the interactions between the star and the disk results in magnetic braking and angular momentum loss of the star. On time scales t_{br} ~ a few 10^5 yrs, i.e., of the same order as the estimated duration of the Class~I protostar stage. Close to the birthline there must be a mass-rotation relation, t_{br} \simpropto M_\star, such that stars with M_\star \simgt 1-2 M_\odot are fast rotators, while their lower-mass counterparts have had the time to spin down. The rapid rotation and strong star-disk magnetic interactions of YLW15 also naturally explain the observation of X-ray ``superflares''. In the case of YLW15, and perhaps also of other protostars, a hot coronal wind (T~10^6 K) may be responsible for the VLA thermal radio emission. This paper thus proposes the first clues to the rotation status and evolution of protostars.Comment: 13 pages with 6 figures. To be published in ApJ (April 10, 2000 Part 1 issue

    Hospital managers' need for information in decision-making--An interview study in nine European countries.

    Get PDF
    Assessments of new health technologies in Europe are often made at the hospital level. However, the guidelines for health technology assessment (HTA), e.g. the EUnetHTA Core Model, are produced by national HTA organizations and focus on decision-making at the national level. This paper describes the results of an interview study with European hospital managers about their need for information when deciding about investments in new treatments. The study is part of the AdHopHTA project. Face-to-face, structured interviews were conducted with 53 hospital managers from nine European countries. The hospital managers identified the clinical, economic, safety and organizational aspects of new treatments as being the most relevant for decision-making. With regard to economic aspects, the hospital managers typically had a narrower focus on budget impact and reimbursement. In addition to the information included in traditional HTAs, hospital managers sometimes needed information on the political and strategic aspects of new treatments, in particular the relationship between the treatment and the strategic goals of the hospital. If further studies are able to verify our results, guidelines for hospital-based HTA should be altered to reflect the information needs of hospital managers when deciding about investments in new treatments

    Quantum shot-noise at local tunneling contacts on mesoscopic multiprobe conductors

    Full text link
    New experiments that measure the low-frequency shot-noise spectrum at local tunneling contacts on mesoscopic structures are proposed. The current fluctuation spectrum at a single tunneling tip is determined by local partial densities of states. The current-correlation spectrum between two tunneling tips is sensitive to non-diagonal density of states elements which are expressed in terms of products of scattering states of the conductor. Thus such an experiment permits to investigate correlations of electronic wave functions. We present specific results for a clean wire with a single barrier and for metallic diffusive conductors.Comment: 4 pages REVTeX, 2 figure
    corecore