509 research outputs found

    Heterogeneous Extractive Batch Distillation of Chloroform - Methanol – Water : Feasibility and Experiments

    Get PDF
    A novel heterogeneous extractive distillation process is considered for separating the azeotropic mixture chloroform – methanol in a batch rectifying column, including for the first time an experimental validation of the process. Heterogeneous heavy entrainer water is selected inducing an unstable ternary heteroazeotrope and a saddle binary heteroazeotrope with chloroform (ternary diagram class 2.1-2b). Unlike to well-known heterogeneous azeotropic distillation process and thanks to continuous water feeding at the column top, the saddle binary heteroazeotrope chloroform – water is obtained at the column top, condensed and further split into the liquid – liquid decanter where the chloroform-rich phase is drawn as distillate. First, feasibility analysis is carried out by using a simplified differential model in the extractive section for determining the proper range of the entrainer flowrate and the reflux ratio. The operating conditions and reflux policy are validated by rigorous simulation with ProSim Batch Column® where technical features of a bench scale distillation column have been described. Six reproducible experiments are run in the bench scale column matching the simulated operating conditions with two sequentially increasing reflux ratio values. Simulation and experiments agree well. With an average molar purity higher than 99%, more than 85% of recovery yield was obtained for chloroform and methanol

    Comparison of Scalar and Vector Diffraction Modelling for Deep-UV Lithography

    Get PDF
    As deep-UV projection system complexity increases to pursue 0.25 micron resolution, the adequacy of diffraction theory using scalar models is of concern. Approximations that are suitable for low NA reduction systems do not hold true for higher NAs. Furthermore, scalar models treat all illumination as polarized perpendicular to the plane of incidence. Feature interaction effects from the polarized radiation of an excimer laser both in a projection system and within a photoresist film cannot be accounted for. Vector diffraction theory has been utilized more appropriately for modelling in these situations, but deviations of scalar predictions from those made with vector models do not warrant abandonment. This paper will describe investigations into scalar and vector diffraction modelling for 248 nm lithography. An experimental design approach was used to study the effects and interactions of coherence, polarization, and numerical aperture on a resist feature response. An exposure latitude response to achieve 1 0% linewidth control with +1- 0.3 micron of defocus was utilized. Both vector and scalar diffraction models were used to simulate process runs. Experimental comparisons were made using a variable NA, variable coherence deep-UV projection system, adapted for control of polarization at the aperture of the mask. Exposure latitude response surfaces are presented, along with details on isolated process runs

    Chromosomal bar codes produced by multicolor fluorescence in situ hybridization with multiple YAC clones and whole chromosome painting probes

    Get PDF
    Colored chromosome staining patterns, termed chromosomal ‘bar codes’ (CBCs), were obtained on human chromosomes by fluorescence in situ hybridization (FISH) with pools of Alu-PCR products from YAC dones containing human DNA inserts ranging from 100 kbp to 1 Mbp. In contrast to conventional G- or R-bands, the chromosomal position, extent, Individual color and relative signal intensity of each ‘bar’ could be modified depending on probe selection and labeling procedures. Alu-PCR amplification products were generated from 31 YAC clones which mapped to 37 different chromosome bands. For multiple color FISH, Alu-PCR amplification products from various clones were either biotinylated or labeled with digoxigenin. Probes from up to twenty YAC clones were used simultaneously to produce CBCs on selected human chromosomes. Evaluation using a cooled CCD camera and digital image analysis confirmed the high reproducibility of the bars from one metaphase spread to another. Combinatorial FISH with mixtures of whole chromosome paint probes was applied to paint seven chromosomes simultaneously in different colors along with a set of YAC clones which map to these chromosomes. We discuss the potential to construct analytical chromosomal bar codes adapted to particular needs of cytogenetic investigations and automated image analysis

    Factors controlling interannual variability of vertical organic matter export and phytoplankton bloom dynamics – a numerical case-study for the NW Mediterranean Sea

    Get PDF
    Mid-latitude spring blooms of phytoplankton show considerable year-to-year variability in timing, spatial extent and intensity. It is still unclear to what degree the bloom variability is connected to the magnitude of the vertical flux of organic matter. A coupled three-dimensional hydrodynamic-biogeochemical model is used to relate interannual variability in phytoplankton spring-bloom dynamics to variability in the vertical export of organic matter in the NW Mediterranean Sea. Simulation results from 2001 to 2010, validated against remote-sensing chlorophyll, show marked interannual variability in both timing and shape of the bloom. Model results show a tendency for the bloom to start later after cold and windy winters. However, the onset of the bloom occurs often when the mixed layer is still several hundred metres deep while the heat flux is already approaching zero and turbulent mixing is low. Frequency and intensity of wind episodes control both the timing and development of the bloom and the consequent export flux of organic matter. The wintertime flux is greater than zero and shows relatively low interannual variability. The magnitude of the interannual variability is mainly determined in March when the frequency of windy days positively correlates with the export flux. Frequent wind-driven mixing episodes act to increase the export flux and, at the same time, to interrupt the bloom. Perhaps counterintuitively, our analysis shows that years with discontinuous, low-chlorophyll blooms are likely to have higher export flux than years with intense uninterrupted blooms. The NW Mediterranean shows strong analogy with the North Atlantic section within the same latitude range. Hence, our results may also be applicable to this quantitatively more important area of the world ocean

    Operational Observatory of the catalan sea (OOCS)

    Get PDF
    The Operational Observatory of the Catalan Sea (OOCS) recently created by the Operational Oceanography Group at CEAB-CSIC is presented. The OOCS aims at performing observations of the marine environment in the Catalan Sea and beyond, assessing, modelling and forecasting the hydrodynamic and biogeochemical processes of the region. Some of the biogeochemical variables available in the models and forecast are phytoplankton, zooplankton and nutrients. Although OOCS is expected to be fully operational in 2011, some of its services are already available to the public through a dedicated webpage http://www.ceab.csic.es/~simob/.Peer Reviewe

    Mifepristone increases mRNA translation rate, triggers the unfolded protein response, increases autophagic flux, and kills ovarian cancer cells in combination with proteasome or lysosome inhibitors

    Get PDF
    The synthetic steroid mifepristone blocks the growth of ovarian cancer cells, yet the mechanism driving such effect is not entirely understood. Unbiased genomic and proteomic screenings using ovarian cancer cell lines of different genetic backgrounds and sensitivities to platinum led to the identification of two key genes upregulated by mifepristone and involved in the unfolded protein response (UPR): the master chaperone of the endoplasmic reticulum (ER), glucose regulated protein (GRP) of 78 kDa, and the CCAAT/enhancer binding protein homologous transcription factor (CHOP). GRP78 and CHOP were upregulated by mifepristone in ovarian cancer cells regardless of p53 status and platinum sensitivity. Further studies revealed that the three UPR-associated pathways, PERK, IRE1α, and ATF6, were activated by mifepristone. Also, the synthetic steroid acutely increased mRNA translation rate, which, if prevented, abrogated the splicing of XBP1 mRNA, a non-translatable readout of IRE1α activation. Moreover, mifepristone increased LC3-II levels due to increased autophagic flux. When the autophagic–lysosomal pathway was inhibited with chloroquine, mifepristone was lethal to the cells. Lastly, doses of proteasome inhibitors that are inadequate to block the activity of the proteasomes, caused cell death when combined with mifepristone; this phenotype was accompanied by accumulation of poly-ubiquitinated proteins denoting proteasome inhibition. The stimulation by mifepristone of ER stress and autophagic flux offers a therapeutic opportunity for utilizing this compound to sensitize ovarian cancer cells to proteasome or lysosome inhibitors.Fil: Zhang, Lei. University Of South Dakota; Estados UnidosFil: Hapon, María Belén. University Of South Dakota; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Goyeneche, Alicia A.. University Of South Dakota; Estados Unidos. McGill University; CanadáFil: Srinivasan, Rekha. University Of South Dakota; Estados UnidosFil: Gamarra Luques, Carlos Diego. University Of South Dakota; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Callegari, Eduardo A.. University Of South Dakota; Estados UnidosFil: Drappeau, Donis D.. University Of South Dakota; Estados UnidosFil: Terpstra, Erin J.. University Of South Dakota; Estados UnidosFil: Pan, Bo. University Of South Dakota; Estados UnidosFil: Knapp, Jennifer R.. University of Kansas; Estados UnidosFil: Chien, Jeremy. University of Kansas; Estados UnidosFil: Wang, Xuejun. University Of South Dakota; Estados UnidosFil: Eyster, Kathleen M.. University Of South Dakota; Estados UnidosFil: Telleria, Carlos Marcelo. University Of South Dakota; Estados Unidos. McGill University; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Isolation of YAC Clones From the Pericentromeric Region of Chromosome 10 and Development of New Genetic Markers Linked to the Multiple Endocrine Neoplasia Type 2A Gene

    Get PDF
    Genetic linkage mapping and contig assembly using yeast artificial chromosome (YAC) technology form the basis of our strategy to clone and define the genomic structure of the pericentromeric region of chromosome 10 containing the multiple endocrine neoplasia type 2A gene. Thus far YAC walks have been initiated from five chromosome 10 pericentromeric loci including RBP3, D10S94, RET, D10Z1, and FNRB. Long range pulsed-field gel electrophoresis maps are constructed from the YACs isolated to define clone overlaps and to identify putative CpG islands. Bidirectional YAC walks are continued by rescreening the YAC library with sequence-tagged site assays developed from endclones. Several new restriction fragment length polymorphisms and simple sequence repeat polymorphism markers have been identified from the YAC clones. In particular, two highly informative (CA)n dinucleotide repeat markers, sTCL-1 from proximal chromosome 10p (16 alleles, PIC = 0.68) and sJRH-1 from the RBP3 locus (18 alleles. PIC = 0.88), provide useful reagents for a polymerase chain reaction-based predictive genetic test that can be performed rapidly from small amounts of DNA
    • …
    corecore