2,111 research outputs found

    The roughness of stylolites: Implications of 3D high resolution topography measurements

    Get PDF
    Stylolites are natural pressure-dissolution surfaces in sedimentary rocks. We present 3D high resolution measurements at laboratory scales of their complex roughness. The topography is shown to be described by a self-affine scaling invariance. At large scales, the Hurst exponent is ζ10.5\zeta_1 \approx 0.5 and very different from that at small scales where ζ21.2\zeta_2 \approx 1.2. A cross-over length scale at around \L_c =1~mm is well characterized. Measurements are consistent with a Langevin equation that describes the growth of a stylolitic interface as a competition between stabilizing long range elastic interactions at large scales or local surface tension effects at small scales and a destabilizing quenched material disorder.Comment: 4 pages, 4 figure

    A single chain analysis of doped quasi one dimensional spin 1 compounds: paramagnetic versus spin 1/2 doping

    Full text link
    We present a numerical study of single chain models of doped spin 1 compounds. We use low energy effective one-dimensional models for both the cases of paramagnetic and spin-1/2 doping. In the case of paramagnetic doping, the effective model is equivalent to the bond disordered spin-1/2 chain model recently analyzed by means of real space renormalization group by Hyman and Yang. By means of exact diagonalizations in the XX limit, we confirm the stability of the Haldane phase for weak disorder. Above a critical amount of disorder, the effective model flows to the so called random singlet fixed point. In the case of spin-1/2 doping, we argue that the Haldane phase should be destabilized even for weak disorder. This picture is not in contradiction with existing experimental data. We also discuss the possible occurrence of (unobserved) antiferromagnetically ordered phases.Comment: 13 pages, 7 included figure

    Excitation Spectrum of S=1S=1 Antiferromagnetic Chains

    Full text link
    The dynamical structure factor S(Q,ω)S(Q,\omega) of the S=1S=1 antiferromagnetic Heisenberg chain with length 20 at zero temperature is calculated. The lowest energy states have the delta-function peak at the region πQ>0.3π\pi\ge \vert Q\vert >0.3\pi. At Q<0.3π\vert Q\vert<0.3\pi the lowest energy states are the lower-edge of the continuum of the scattering state, the strength of which decreases for large systems. This gives a reasonable explanation for the experimental fact that no clear peak is observed at the region Q<0.3πQ<0.3\pi. This situation is more apparent for valence-bond solid state. On the contrary for S=1/2S=1/2 antiferromagnetic Heisenberg chain the lowest energy states are always the edge of the continuum.Comment: 14pages, Revtex 3.0, No.279

    Top quark production at future lepton colliders in the asymptotic regime

    Get PDF
    The production of a tt(bar) pair from lepton-antilepton annihilation is considered for values of the center of mass energy much larger than the top mass, typically of the few TeV size. In this regime a number of simplifications occurs that allows to derive the leading asymptotic terms of various observables using the same theoretical description that was used for light quark production. Explicit examples are shown for the Standard Model and the Minimal Supersymmetric Standard Model cases.Comment: 20 pages and 13 figures. e-mail: [email protected]

    Multiscale non-adiabatic dynamics with radiative decay, case study on the post-ionization fragmentation of rare-gas tetramers

    Get PDF
    In this supplementary material, we recollect, for reader's convenience, the general scheme of suggested multiscale model (Sec. 1), and basic informations about approaches used for pilot study: a detailed description of the interaction model (Sec. 2) and dynamical methods used for the dark dynamics step (Sec. 3) reported previously in two preceding studies [1, 2]. In addition, a detailed description of the treatment of radiative processes is also given (Sec. 4).Comment: supplementary material for parent paper; 9 pages, 1 figure; corrected formulae and misleading notation in Sec.4 (pages 7 and 8

    Special Supersymmetric features of large invariant mass unpolarized and polarized top-antitop production at LHC

    Full text link
    We consider the top-antitop invariant mass distributions for production of unpolarized and polarized top quark pairs at LHC, in the theoretical framework of the MSSM. Assuming a "moderately" light SUSY scenario, we derive the leading logarithmic electroweak contributions at one loop in a region of large invariant mass, Mttˉ1M_{t\bar t}\simeq1 TeV, for the unpolarized differential cross section dσ/dMttˉd\sigma/dM_{t\bar t} and for the differential longitudinal top polarization asymmetry At(Mttˉ)A_t(M_{t\bar t}). We perform a realistic evaluation of the expected uncertainties of the two quantities, both from a theoretical and from an experimental point of view, and discuss the possibility of obtaining, from accurate measurements of the two mass distributions, stringent consistency tests of the model, in particular identifications of large tanβ\tan\beta effects.Comment: 23 pages, 9 eps figure

    S(k) for Haldane Gap Antiferromagnets: Large-scale Numerical Results vs. Field Theory and Experiment

    Full text link
    The structure function, S(k), for the s=1, Haldane gap antiferromagnetic chain, is measured accurately using the recent density matrix renormalization group method, with chain-length 100. Excellent agreement with the nonlinear σ\sigma model prediction is obtained, both at kπk\approx \pi where a single magnon process dominates and at k0k\approx 0 where a two magnon process dominates. We repeat our calculation with crystal field anisotropy chosen to model NENP, obtaining good agreement with both field theory predictions and recent experiments. Correlation lengths, gaps and velocities are determined for both polarizations.Comment: 11 pages, 3 postscript figures included, REVTEX 3.0, UBCTP-93-02

    Dynamical Properties of a Haldane Gap Antiferromagnet

    Full text link
    We study the dynamic spin correlation function of a spin one antiferromagnetic chain with easy-plane single-ion anisotropy. We use exact diagonalization by the Lancz\H os method for chains of lengths up to N=16 spins. We show that a single-mode approximation is an excellent description of the dynamical properties. A variational calculation allows us to clarify the nature of the excitations. The existence of a two-particle continuum near zero wavevector is clearly seen both in finite-size effects and in the dynamical structure factor. The recent neutron scattering experiments on the quasi-one-dimensional antiferromagnet NENP are fully explained by our results.Comment: 14 pages, SphT/92-135 plain tex with Postscript figures included. Postscipt file available by anonymous ftp at amoco.saclay.cea.fr by get pubs.spht/92-135.ps local_file (290 kb) or get pubs.spht/92-135.ps.Z local_file.Z (compressed - 120 kb

    A method for the stochastic modeling of karstic systems accounting for geophysical data: an example of application in the region of Tulum, Yucatan Peninsula (Mexico)

    Get PDF
    The eastern coast of the Yucatan Peninsula, Mexico, contains one of the most developed karst systems in the world. This natural wonder is undergoing increasing pollution threat due to rapid economic development in the region of Tulum, together with a lack of wastewater treatment facilities. A preliminary numerical model has been developed to assess the vulnerability of the resource. Maps of explored caves have been completed using data from two airborne geophysical campaigns. These electromagnetic measurements allow for the mapping of unexplored karstic conduits. The completion of the network map is achieved through a stochastic pseudo-genetic karst simulator, previously developed but adapted as part of this study to account for the geophysical data. Together with the cave mapping by speleologists, the simulated networks are integrated into the finite-element flow-model mesh as pipe networks where turbulent flow is modeled. The calibration of the karstic network parameters (density, radius of the conduits) is conducted through a comparison with measured piezometric levels. Although the proposed model shows great uncertainty, it reproduces realistically the heterogeneous flow of the aquifer. Simulated velocities in conduits are greater than 1cm s−1, suggesting that the reinjection of Tulum wastewater constitutes a pollution risk for the nearby ecosystem
    corecore