We present a numerical study of single chain models of doped spin 1
compounds. We use low energy effective one-dimensional models for both the
cases of paramagnetic and spin-1/2 doping. In the case of paramagnetic doping,
the effective model is equivalent to the bond disordered spin-1/2 chain model
recently analyzed by means of real space renormalization group by Hyman and
Yang. By means of exact diagonalizations in the XX limit, we confirm the
stability of the Haldane phase for weak disorder. Above a critical amount of
disorder, the effective model flows to the so called random singlet fixed
point. In the case of spin-1/2 doping, we argue that the Haldane phase should
be destabilized even for weak disorder. This picture is not in contradiction
with existing experimental data. We also discuss the possible occurrence of
(unobserved) antiferromagnetically ordered phases.Comment: 13 pages, 7 included figure