2,332 research outputs found

    Magnetohydrodynamic scaling: From astrophysics to the laboratory

    Full text link
    During the last few years, considerable progress has been made in simulating astrophysical phenomena in laboratory experiments with high-power lasers. Astrophysical phenomena that have drawn particular interest include supernovae explosions; young supernova remnants; galactic jets; the formation of fine structures in late supernovae remnants by instabilities; and the ablation-driven evolution of molecular clouds. A question may arise as to what extent the laser experiments, which deal with targets of a spatial scale of ∼100 μm and occur at a time scale of a few nanoseconds, can reproduce phenomena occurring at spatial scales of a million or more kilometers and time scales from hours to many years. Quite remarkably, in a number of cases there exists a broad hydrodynamic similarity (sometimes called the “Euler similarity”) that allows a direct scaling of laboratory results to astrophysical phenomena. A discussion is presented of the details of the Euler similarity related to the presence of shocks and to a special case of a strong drive. Constraints stemming from the possible development of small-scale turbulence are analyzed. The case of a gas with a spatially varying polytropic index is discussed. A possibility of scaled simulations of ablation front dynamics is one more topic covered in this paper. It is shown that, with some additional constraints, a simple similarity exists. © 2001 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71174/2/PHPAEN-8-5-1804-1.pd

    Transient x-ray diffraction used to diagnose shock compressed Si crystals on the Nova laser

    Get PDF
    Transient x-ray diffraction is used to record time-resolved information about the shock compression of materials. This technique has been applied on Nova shock experiments driven using a hohlraum x-ray drive. Data were recorded from the shock release at the free surface of a Si crystal, as well as from Si at an embedded ablator/Si interface. Modeling has been done to simulate the diffraction data incorporating the strained crystal rocking curves and Bragg diffraction efficiencies. Examples of the data and post-processed simulations are presented

    Panoramic optical and near-infrared SETI instrument: prototype design and testing

    Get PDF
    The Pulsed All-sky Near-infrared Optical Search for ExtraTerrestrial Intelligence (PANOSETI) is an instrument program that aims to search for fast transient signals (nano-second to seconds) of artificial or astrophysical origin. The PANOSETI instrument objective is to sample the entire observable sky during all observable time at optical and near-infrared wavelengths over 300 - 1650 nm1^1. The PANOSETI instrument is designed with a number of modular telescope units using Fresnel lenses (\sim0.5m) arranged on two geodesic domes in order to maximize sky coverage2^2. We present the prototype design and tests of these modular Fresnel telescope units. This consists of the design of mechanical components such as the lens mounting and module frame. One of the most important goals of the modules is to maintain the characteristics of the Fresnel lens under a variety of operating conditions. We discuss how we account for a range of operating temperatures, humidity, and module orientations in our design in order to minimize undesirable changes to our focal length or angular resolution.Comment: 12 pages, 8 figures, 1 tabl

    X-ray Astronomy in the Laboratory with a Miniature Compact Object Produced by Laser-Driven Implosion

    Full text link
    Laboratory spectroscopy of non-thermal equilibrium plasmas photoionized by intense radiation is a key to understanding compact objects, such as black holes, based on astronomical observations. This paper describes an experiment to study photoionizing plasmas in laboratory under well-defined and genuine conditions. Photoionized plasma is here generated using a 0.5-keV Planckian x-ray source created by means of a laser-driven implosion. The measured x-ray spectrum from the photoionized silicon plasma resembles those observed from the binary stars Cygnus X-3 and Vela X-1 with the Chandra x-ray satellite. This demonstrates that an extreme radiation field was produced in the laboratory, however, the theoretical interpretation of the laboratory spectrum significantly contradicts the generally accepted explanations in x-ray astronomy. This model experiment offers a novel test bed for validation and verification of computational codes used in x-ray astronomy.Comment: 5 pages, 4 figures are included. This is the original submitted version of the manuscript to be published in Nature Physic

    Laser experiments to simulate supernova remnants

    Full text link
    An experiment using a large laser facility to simulate young supernova remnants (SNRs) is discussed. By analogy to the SNR, the laboratory system includes dense matter that explodes, expansion and cooling to produce energetic, flowing plasma, and the production of shock waves in lower-density surrounding matter. The scaling to SNRs in general and to SN1987A in particular is reviewed. The methods and results of x-ray radiography, by which the system in diagnosed, are discussed. The data show that the hohlraum used to provide the energy for explosion does so in two ways—first, through its radiation pulse, and second, through an additional impulse that is attributed to stagnation pressure. Attempts to model these dynamics are discussed. © 2000 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69889/2/PHPAEN-7-5-2142-1.pd

    Supernova hydrodynamics experiments on Nova

    Full text link
    We are developing experiments using the Nova laser to investigate (1) compressible nonlinear hydrodynamic mixing relevant to the first few hours of the supernova (SN) explosion and (2) ejecta-ambient plasma interactions relevant to the early SN remnant phase. The experiments and astrophysical implications are discussed. We discuss additional experiments possible with ultra-high-intensity lasers. © 1998 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87451/2/551_1.pd

    Evaluating the efficacy of independent versus simultaneous management strategies to address ecological and genetic threats to population viability

    Get PDF
    ACKNOWLEDGMENTS We thank Sue Bignal, all land-owners and farmers and everyone who helped with fieldwork on Islay. We thank members of the Scottish Chough Forum, particularly Rae Mckenzie and Des Thompson for valuable input on management scenarios. AET was funded by Scottish Natural Heritage (SNH) and Royal Society for the Protection of Birds. SRF was funded by a Natural Environment Research Council iCASE studentship supported by SNH.Peer reviewedPublisher PD
    corecore