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Abstract
1. Small, declining populations can face simultaneous, interacting, ecological and 

genetic threats to viability. Conservation management strategies designed to 
tackle such threats independently may then prove ineffective. Population viability 
analyses that evaluate the efficacy of management strategies implemented in-
dependently versus simultaneously are then essential to the design of effective 
management plans, yet such quantitative evaluations are typically lacking.

2. We used stochastic individual‐based models, parameterised with high‐quality 
multi‐year demographic and genetic data, to evaluate the efficacy of independent 
or simultaneous ecological (supplementary feeding) and genetic (translocations to 
alleviate inbreeding) management strategies for a red‐billed chough (Pyrrhocorax 
pyrrhocorax) population of major conservation concern. This population is expe-
riencing ecological threats from food limitation and genetic threats from escalat-
ing inbreeding. Conservation managers therefore face a dilemma: supplementary 
feeding may be ineffective if inbreeding is limiting stochastic population growth 
rate (λs), while translocations may be ineffective if food is limiting.

3. Model simulations suggested that the focal population will decline to extinction rela-
tively rapidly with no conservation management (mean λs ≈ 0.86) and with genetic 
management alone (λs ≈ 0.90). Ecological management alone reduced, but did not halt 
the population decline (λs ≈ 0.93). However, simultaneous genetic and ecological man-
agement yielded population stability (λs ≈ 1), with genetic rescue lasting ~25 years.

4. These outcomes arose because the capacity for translocations to alleviate in-
breeding depression is limited by food availability, while supplementary feeding 
cannot achieve population viability in the presence of accumulating inbreeding. 
However, supplementary feeding improved environmental quality enough to 
allow expression of variance in fitness and thus inbreeding depression, meaning 
that reductions in inbreeding following translocations can increase λs.

5. Synthesis and applications. Our analyses suggest that simultaneous management 
of ecological and genetic threats will be critical to ensuring viability of Scotland's 
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1  | INTRODUC TION

Small, declining populations can face multiple ecological, genetic 
and demographic threats that act simultaneously to decrease via-
bility (Fagan & Holmes, 2006; Soulé & Mills, 1998). Conservation 
managers often focus on tackling such threats independently, yet 
the efficacy of individual strategies may be interdependent (Ewen, 
Armstrong, Parker, & Seddon, 2012). Independent management of 
threats may then fail to ensure population viability, meaning that 
managers must tackle threats holistically or risk further popula-
tion decline and wasted conservation resources (Brook, Sodhi, & 
Bradshaw, 2008). Evaluating the efficacy of multiple management 
strategies implemented independently versus simultaneously is 
therefore key to designing management plans that effectively and 
efficiently achieve long‐term population viability.

Ecological threats causing population declines can include pre-
dation (Wiles, Bart, Beck, & Aguon, 2003), disease (Preece et al., 
2017) and decreased resources (e.g. food limitation, Ford, Ellis, 
Olesiuk, & Balcomb, 2010). Managers can therefore focus on allevi-
ating these threats, for example, through predator or disease–vec-
tor control (Liao, Atkinson, LaPointe, & Samuel, 2017; Russell et al., 
2015), habitat management (Eglington et al., 2010) or supplemen-
tary feeding (González, Margalida, Sánchez, & Oria, 2006). However 
once a population becomes small and isolated, demographic sto-
chasticity, and genetic threats from inbreeding and genetic drift 
can further decrease population viability (Keller & Waller, 2002). In 
particular, inbreeding can threaten short‐term viability by decreas-
ing individual fitness (i.e. inbreeding depression, Charlesworth & 
Willis, 2009; Keller & Waller, 2002), and is therefore of immediate 
concern. One potential management response is population rein-
forcement through translocations of suitable conspecifics (Seddon, 
2010). Such translocations can have demographic benefits because 
increased population size reduces demographic stochasticity and 
Allee effects (Brown & Kodric‐Brown, 1977; Hufbauer et al., 2015), 
and genetic benefits through reduced inbreeding and increased 
genetic diversity (Frankham, 2015; Whiteley, Fitzpatrick, Funk, & 
Tallmon, 2015).

However, translocations may fail to increase population viabil-
ity if ecological threats are an overriding constraint on stochastic 

population growth rate (λs) compared to inbreeding depression. 
This may occur if inbreeding depression is weak or depends on en-
vironmental conditions (inbreeding‐by‐environment interactions, 
Cheptou & Donohue, 2011). Inbreeding depression is often ex-
pected to be greater in harsh environments (Figure 1, Fox & Reed, 
2011), although such effects are not always evident in wild popula-
tions (Kruuk, Sheldon, & Merilä, 2002; Laws, Townsend, Nakagawa, 
& Jamieson, 2010; Walling et al., 2011). However, in very harsh en-
vironments, the magnitude of inbreeding depression may be con-
strained by low phenotypic variation in fitness (low “opportunity for 
inbreeding depression”, Crow, 1958; Waller, Dole, & Bersch, 2008). 
Specifically, inbreeding depression would be negligible in very harsh 
environments where all individuals perform poorly, and actually in-
crease as environmental quality, and hence the opportunity for varia-
tion in fitness, increases (Figure 1). Such weak inbreeding depression 
in very harsh experimental environments was observed in Brassica 
rapa (Waller et al., 2008) and Rhinanthus alectorolophus (Sandner & 
Matthies, 2017), and may explain inconsistent environmental effects 
on inbreeding depression in Soay sheep (Ovis aries, Pemberton, Ellis, 

chough population; neither strategy independently is likely to achieve popula-
tion persistence and may consequently waste conservation resources. Managers 
of other resource‐limited, inbred populations should consider that the efficacy 
of strategies designed to alleviate ecological and genetic threats may be interde-
pendent, such that holistic management is essential to ensure population viability.
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environment interactions, population persistence, population reinforcement, supplementary 
feeding

F I G U R E  1   Conceptualised magnitude of inbreeding depression 
(zero to very strong) expressed in relation to environmental quality 
(very harsh to very good). (a) For a population experiencing a 
very harsh environment, the magnitude of inbreeding depression 
expressed is constrained by low variance in fitness, and will 
increase as environmental quality increases. (b) Above some 
environmental quality (dashed green line), the standard expectation 
that magnitude of inbreeding depression expressed decreases as 
environmental quality increases applies. The exact shape of the 
relationship will vary among traits, environments, populations and 
species
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Pilkington, & Bérénos, 2017). Translocations to reduce inbreeding 
may then provide little improvement in population viability and in-
stead waste conservation resources. Indeed, translocations negligi-
bly increased persistence probability in American martens (Martes 
Americana) experiencing ecological threats (Manlick, Woodford, 
Gilbert, Eklund, & Pauli, 2017). Similarly, long‐term population via-
bility of greater prairie‐chickens (Tympanuchus cupido pinnatus) may 
be limited by ecological threats despite apparent short‐term efficacy 
of translocations (Bouzat et al., 2009). For such populations, translo-
cations may only be worthwhile when environmental conditions are 
good enough that resulting outbred offspring can express relatively 
higher fitness (Figure 1).

Conversely, management strategies that focus on alleviating 
ecological threats but disregard genetic threats may also fail to 
ensure population viability (Ralls et al., 2018). Inbreeding has been 
associated with increased extinction risk in wild populations (e.g. 
Glanville fritillary butterfly Melitaea cinxia, Saccheri et al., 1998; 
Shore campion Silene littorea, Vilas, San Miguel, Amaro, & Garcia, 
2010; and Clarkia Pulchella, Newman & Pilson, 1997), and may sig-
nificantly decrease predicted time to extinction (O’Grady et al., 
2006). Furthermore, inbreeding will inevitably increase if popula-
tions remain small and isolated (Crow & Kimura, 1970), and thereby 
increasingly threaten population viability across generations. 
Rigorous evaluations of the efficacy of ecological and genetic man-
agement strategies to ensure population viability should therefore 
consider the interdependence of these strategies over appropriate 
time frames. Yet, while the general need to consider joint ecological 
and genetic management approaches has been noted (e.g. Bouzat et 
al., 2009; Kenney, Allendorf, McDougal, & Smith, 2014), population 
viability analyses (PVAs) that quantitatively evaluate the efficacy of 
independent and simultaneous ecological and genetic management 
strategies are lacking, particularly in the context of environment‐de-
pendent inbreeding depression.

One such population that is facing genetic and ecological threats 
and is of major conservation concern is the Scottish red‐billed 
chough (Pyrrhocorax pyrrhocorax, hereafter “choughs”) population. 
Choughs are Annex 1 listed (EU Birds Directive) placing a legal duty 
of conservation on national agencies (i.e. Scottish Natural Heritage). 
Scotland's chough population decreased from ~105 breeding pairs in 
1986 (Monaghan, Bignal, Bignal, Easterbee, & McKay, 1989) to ~49 
pairs in 2018, with most pairs inhabiting the island of Islay (~87% 
in 2017). This population has been the subject of individual‐based 
demographic monitoring, comprising colour‐ringing, resightings and 
nest‐monitoring, since 1983 (Appendices 1 and 2, Reid et al., 2008; 
Reid, Bignal, Bignal, McCracken, & Monaghan, 2003b, 2004). The 
main demographic rate causing population decline is low first‐year 
survival, reflecting low food availability (Reid et al., 2008; Reid, 
Bignal, Bignal, McCracken, & Monaghan, 2004). Critically low first‐
year survival during 2007–2009 caused a rapid projected popula-
tion decline (deterministic growth rate λ ≈ 0.87, Reid et al., 2011), 
sparking emergency intervention through targeted supplementary 
feeding during 2010–2018 (Bignal & Bignal, 2011). However, Islay's 
chough population is isolated from other UK populations (Appendix 

1) and has a critically small effective size (Ne ~ 30, Trask, Bignal, 
McCracken, Piertney, & Reid, 2017). Inbreeding is therefore inevita-
ble and will increase relatively rapidly across generations. While the 
full magnitude of inbreeding depression is unknown, it is likely to be 
non‐trivial, evidenced by phenotypic expression of a lethal recessive 
allele causing blindness (Trask et al., 2016). Conservation managers 
therefore face a dilemma of whether to continue investing in man-
aging ecological threats, begin alternative or additional management 
of genetic threats, or consider ceasing management if all strategies 
are likely to be ineffective. Quantitative evaluation of these poten-
tial strategies to achieve population viability is therefore urgently 
required.

PVAs for threatened populations are often impeded by lack of 
data on baseline demography and/or management impacts, greatly 
increasing uncertainty regarding population outcomes. We use 
detailed demographic data, including estimated effects of supple-
mentary feeding, and available genetic data, to parameterise PVAs 
designed to evaluate λs and population viability given four potential 
management scenarios for the focal chough population. The four 
scenarios, formulated in consultation with key stakeholders and con-
servation managers, are (i) no management (i.e. cease supplementary 
feeding); (ii) genetic management only (i.e. translocations to reduce 
inbreeding, with associated short‐term increase in population size, 
but cease supplementary feeding); (iii) ecological management only 
(i.e. continued supplementary feeding); (iv) simultaneous genetic 
and ecological management (i.e. translocations and supplementary 
feeding). We thereby evaluate the efficacy of independent and si-
multaneous strategies to mitigate ecological and genetic threats, and 
provide management recommendations.

2  | MATERIAL S AND METHODS

2.1 | Model structure and demography

We used an individual‐based population model to evaluate the 
four proposed management scenarios. Our approach incorporates 
among‐individual variation in inbreeding coefficient alongside de-
mographic and environmental stochasticity and dynamic age‐struc-
ture, and incorporates uncertainty in the magnitude of inbreeding 
depression and effects of supplementary feeding.

The model considered an annual pre‐breeding census, with 
first‐year, second‐year and adult (i.e. third year and older) stage 
classes. This structure adequately captures observed chough 
population dynamics (Reid et al., 2004). To capture known spa-
tial variation in habitat and demography across Islay (Reid, Bignal, 
Bignal, McCracken, & Monaghan, 2006), the model was structured 
into five subpopulations (A–E, Appendix 1). Subpopulation car-
rying capacities were set to the maximum number of historically 
occupied territories in each area, plus the number of associated 
sub‐adults (i.e. fledging to age three) at peak population size in the 
1980s (Monaghan et al., 1989, Appendix 4). Additional mortality 
was applied if subpopulation size exceeded the defined local car-
rying capacity (Appendix 1). Other forms of density‐dependent 
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restrictions, such as from food‐resource limitation, were implicitly 
captured in model scenarios. This formulation allowed simulations 
to explore effects of management scenarios, with hard density‐de-
pendence only restricting λs under the best simulated conditions 
(Appendix 1).

Sub‐adult choughs form non‐breeding flocks before pair-
ing and acquiring a breeding territory (Reid, Bignal, Bignal, 
McCracken, & Monaghan, 2003a; Reid et al., 2006). All mod-
elled individuals were assumed to breed annually from age three. 
Dispersal between subpopulations was therefore modelled to 
occur at age three, with the subadult flock implicit. Dispersal 
was modelled from the probability of individual movement from 
natal subpopulation to another subpopulation within Islay, as es-
timated from observations of colour‐ringed individuals’ natal and 
breeding locations.

We first built and parameterised a baseline model representing 
scenario (i) no management. To capture an appropriate baseline, 
this model was parameterised with demographic rates estimated 
across the pre‐supplementary feeding period of 2003–2009 
(Appendix 2). Individual annual reproductive success was modelled 
in two steps: whether a female successfully produced a brood, and 
realised brood size conditional on success (Lacy, Miller, & Traylor‐
Holzer, 2017). Reproductive success was estimated for each sub-
population in each year as the proportion of females that produced 
a brood, and the mean and standard deviation of the number of 
fledglings in successful broods. Since observed brood sex ratios 
are equal on average (Trask et al., 2017), simulated offspring were 
assigned as female or male with equal probability. Stage‐specific 
survival probabilities (ϕs) for first‐years (ϕ1, fledging to age one 
year), second‐years (ϕ2, age one to age two) and adults (ϕAd), and 
hence mortality rates, for each subpopulation were estimated from 
colour‐ring resighting data (Appendices 1 and 2). ϕs values were 
estimated for both sexes together because sexes of sub‐adult in-
dividuals that died before breeding were typically unknown, and 
previous analyses indicate no sex‐specific differences in ϕAd (Reid, 
Bignal, Bignal, McCracken, & Monaghan, 2003b; Reid et al., 2004). 
Among‐year environmental variation in ϕs was estimated excluding 
sampling variance (Appendix 2). Since ϕ1 is tightly correlated with 
cyclic population dynamics of the chough's tipulid prey (Reid et 
al., 2008), simulated environmental variation in ϕ1 was partitioned 
so that half followed cyclic variation and half was stochastic, and 
was correlated across subpopulations (Appendix 2). As environ-
mental variation in reproductive success is relatively small (Reid 
et al., 2004), it was sufficiently captured through the high simu-
lated variance in ϕ1. Mortality of simulated individuals was realised 
at each annual time‐step based on ϕs for each age class in each 
subpopulation.

2.2 | Inbreeding and inbreeding depression

To ensure the initial simulated population's mean inbreeding coef-
ficient (Fp) and coefficient of kinship (K) reflected the Islay chough 
population's, we estimated Fp and pairwise relatedness (r, where 

r = 2K) between individuals from microsatellite genotype data from 
adult choughs sampled across Islay in 2013–2014, using the Dyadic 
likelihood estimator (Milligan, 2003) in program Coancestry v1.0.1.8 
(Wang, 2011, Appendix 3). These analyses yielded estimates of 
Fp = 0.08 ± .02SE and r = 0.15 ± .01SE. To account for likely under-
estimation of Fp and r due to microsatellite ascertainment bias, as 
well as expected increases between sampling and implementation 
of any translocations given the small Ne (Trask et al., 2017), we set 
founder individuals’ coefficients of inbreeding (Fi) to 0.1 and founder 
K to 0.1 (Appendix 3). In practice, simulations were relatively insensi-
tive, and key conclusions remained unchanged, given starting Fi and 
K between 0.05 and 0.15 (Appendix 3). Fi values in subsequent gen-
erations were calculated from the simulated pedigree using standard 
algorithms (Lacy et al., 2017).

Inbreeding depression expressed given Fi was modelled as the 
number of diploid lethal equivalents (2B, where B is the slope of a 
regression of log(fitness) on Fi, Charlesworth & Willis, 2009; Keller 
& Waller, 2002). B can be estimated from breeding experiments 
(Darwin, 1876), genomic analyses (Remington & O’Malley, 2000) 
or pedigree analyses (Keller & Waller, 2002). However, as complete 
pedigree and genomic data are unavailable for the focal population 
and breeding experiments are not feasible, we modelled a range 
comprising 2B = 3–15. The lower and upper limits reflect the mean 
estimated across captive populations and the sum of published mean 
estimates of inbreeding load across life‐history stages, respectively 
(Appendix 3). Model replicates drew values from this range using 
Latin Hypercube Sampling to optimally sample parameter space 
(Lacy et al., 2017). Inbreeding depression was modelled entirely 
through a reduction in ϕ1 (Appendix 4); ϕ1 is the main demographic 
constraint on λs in choughs (Reid et al., 2011, 2004) and the reduc-
tion in overall lifetime reproductive success is likely to be reasonably 
well captured whether total inbreeding load is applied entirely to ϕ1 

or split over life‐history stages (Lacy et al., 2017). Overall, this for-
mulation ensured that initial simulated individuals could immediately 
experience inbreeding depression, and that genetic rescue could 
potentially restore the putative outbred ϕ1 as opposed to only the 
currently observed ϕ1 (Appendix 4).

2.3 | Modelled genetic and ecological 
management scenarios

Genetic management (scenario ii) was modelled as translocations 
of unrelated (i.e. K = 0) and outbred (i.e. Fi = 0) age one individuals 
into the focal population. Translocated individuals were therefore 
envisaged to originate from a suitable external source population 
(Appendix 5). Scenarios were designed to evaluate the potential 
for successful genetic rescue to achieve population viability. We 
initially considered one translocation of 24 individuals (12 females, 
12 males) in year 3 introduced across subpopulations A–C, or two 
such translocations in years 3 and 6 (i.e. a total of 48 individu-
als, Appendix 5). These moderate‐sized translocations comprised 
enough individuals to ensure that some would survive to breed, 
while avoiding “genetic swamping” of the existing population 
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(Appendix 5). We also considered an additional scenario of two 
large translocations of 48 individuals (24 females, 24 males in 
each translocation) in years 3 and 6, designed to ensure that 
more translocated individuals would survive to breed (Appendix 
5). Translocated individuals took the same baseline demographic 
rates as existing natives and mated randomly, generating out-
breeding and potentially relatively high survival in offspring of im-
migrant‐native pairs.

Ecological management (scenario iii) was modelled by adding es-
timated effects of supplementary feeding on ϕ1, ϕ2 and ϕAd and the 
probability of producing a brood onto the baseline probabilities for 
individuals inhabiting subpopulations A–C (Appendices 1 and 4). As 
supplementary feeding on Islay was implemented as an emergency 
conservation intervention, there is no formal randomised, replicated 
case–control experiment to rigorously quantify effects on key de-
mographic rates. However, comparisons between colour‐ringed in-
dividuals that were and were not observed to attend supplementary 
feeding (hereafter “fed” and “unfed”) can provide broad estimates. 
Effects on ϕAd and reproductive success were estimated using be-
fore‐after control‐impact (BACI) analyses that compared individu-
als inhabiting areas with and without supplementary feeding with 
individuals inhabiting these areas before supplementary feeding 
commenced (Fenn et al. unpublished data, Appendix 6). Effects on 
ϕ1 were directly estimated from the proportions of fed and unfed 
colour‐ringed fledglings that survived to age one year (Appendix 6). 
Since almost all unfed fledglings died before age one and individual 
utilisation of supplementary food was highly consistent across ages, 
this approach could not be used to evaluate effects on ϕ2. Effects 
were therefore estimated by comparing mean population‐wide val-
ues of ϕ2 between feeding and pre‐feeding periods (Appendix 6). For 
current purposes, we assumed no effect of supplementary feeding 
on age at first breeding or dispersal.

To incorporate uncertainty in modelled effects of supplementary 
feeding, each model iteration drew values from the range of 10%–
100% of estimated effect sizes using Latin Hypercube Sampling 
(Lacy et al., 2017). This conservative range was chosen because sup-
plementary feeding was not carried out as a controlled experiment, 
meaning that differences between fed and unfed individuals might 
partly reflect differences in local habitat quality.

We modelled simultaneous ecological and genetic management 
(scenario iv) by parameterising the model with the same estimated 
effects of supplementary feeding plus each of the same three trans-
location scenarios as for the independent ecological and genetic 
management scenarios above.

2.4 | Model implementation and analysis

The model was built in program VORTEX v10.2.17.0 (Lacy & Pollak, 
2017). Initial subpopulation sizes were estimated from the number 
of breeding pairs in each area, plus the number of individuals fledged 
from each area that survived to age one or two in 2017 (i.e. sub‐
adults), with an initial stable age distribution calculated given the 
specified baseline demographic rates (Appendix 4).

For species like choughs with moderately long mean gener-
ation times (~6.7 years, Trask et al., 2017), the most appropriate 
time‐frame for PVAs represents a trade‐off between including suf-
ficient generations to incorporate demographic and genetic pro-
cesses affecting viability (Armbruster, Fernando, & Lande, 1999), 
and avoiding error and unreliable predictions due to unknown 
future environmental conditions (Beissinger & Westphal, 1998; 
Crone et al., 2013). Since we were interested in effects of inbreed-
ing that may impact population viability over relatively short time‐
frames (Keller & Waller, 2002) we defined a 50 year time‐frame, 
thereby encompassing ~7.5 chough generations, and allowing ex-
amination of how long genetic rescue effects last before inbreed-
ing re‐accumulates.

Each model was replicated 5,000 times. To compare the focal 
management scenarios, for each replicate we extracted population 
size in year 50, time to functional extinction (defined as a single sex 
remaining) and λs calculated as the mean of the growth rate across 
extant years. Means and 95% confidence intervals (95%CIs) for 
these metrics were calculated across replicates, using R v3.2.2 (R 
Development Core Team, 2017). The extinction probability (PE) was 
calculated as the proportion of replicate populations that went ex-
tinct within 50 years.

3  | RESULTS

3.1 | No management

The baseline model, representing the “no management” scenario, 
suggests that Islay's chough population would decline to extinction 
relatively rapidly following cessation of supplementary feeding; all 
replicates went extinct within the projected 50 years (Figure 3a). 
This outcome was effectively independent of the magnitude of in-
breeding depression; the rank correlation between λs and 2B across 
replicates was very small (−0.03).

3.2 | Genetic management

Models that considered proposed genetic management scenarios 
(i.e. translocations), but no ecological management, suggest that 
Islay's chough population would still decline to extinction within the 
projected 50‐year time‐frame under proposed genetic management 
scenarios (Figure 3b). With up to two translocations of 24 individu-
als, and even with 48 individuals, �s ≤ 0.92, PE ≥ 0.94, and mean time 
to extinction was 27–35 years. Genetic management alone is there-
fore unlikely to achieve population viability.

3.3 | Ecological management

Supplementary feeding was estimated to have positive effects 
on ϕ1, ϕ2, ϕAd and breeding success (Figure 2, Appendix 6). 
Models that included these effects, representing current ecologi-
cal management without genetic management, showed slower 
population decline (Figure 3c): ~37% of replicate populations 
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were still extant in year 50, when mean population size was 18 
(95%CI: 0–175). The large 95%CI demonstrates considerable un-
certainty around the quantitative outcome (Figure 3c). However, 

the overall qualitative difference from the “no management” and 
“genetic management” scenarios is reasonably clear; current eco-
logical management has a positive effect in slowing the likely rate 
of population decline, but may not result in λs ≥ 1 or hence popu-
lation viability (Figure 3).

To provide some validation of this assessment, the observed 
change in the Islay chough population size through the supple-
mentary feeding period (2010–2017) falls within the 95%CI of the 
projected population sizes (Figure 3c, Appendix S8), implying that 
projections are reasonable.

3.4 | Simultaneous genetic and ecological 
management scenario

Models that included simultaneous ecological and genetic manage-
ment with one translocation of 24 individuals predicted higher �s 
than for current ecological management alone, but still predicted 
population decline (Figure 3d, Appendix 7). With two transloca-
tions each of 24 individuals, population size was initially stable on 
average (�s=1.00, 95%CI: 0.89–1.08 across years 8–25, Figure 3d). 
However, there was a tendency for renewed decrease from year 
25, reflecting reaccumulation of inbreeding (�s = 0.97, 95%CI: .82–
1.06 across years 26–50, Figure 3d, Appendix 3). With two larger 

F I G U R E  3   Size of Islay's chough population projected 50 years into the future (2017–2067) with (a) no management, (b) genetic 
management only consisting of one or two translocations of 24 individuals each, or two large translocations of 48 individuals each, 
(c) ecological management only, and (d) simultaneous ecological and genetic management comprising the same three translocation 
scenarios. Mean population size (solid blue lines) with 95% CI (grey shaded area), mean stochastic population growth rate (�s) with 95% 
CI and extinction probability within 50 years (PE) are shown. For (c), the estimated size of the real chough population after the start of 
supplementary feeding (red dashed line) is also shown
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translocations each of 48 individuals, population size was stable on 
average over the full 50‐year time‐frame (Figure 3d). Again, there 
was substantial uncertainty in quantitative outcomes. However, 
the overall qualitative pattern compared to other modelled scenar-
ios was again reasonably clear: simultaneous ecological and genetic 
management was the only scenario that yielded likely population 
viability.

4  | DISCUSSION

Effective conservation of populations experiencing interacting 
ecological and genetic threats requires explicit evaluation of the 
efficacy of different potential management strategies. We used unu-
sually detailed demographic data from the Scottish chough popula-
tion, which is of major conservation concern, to evaluate the efficacy 
of independent and simultaneous management strategies designed 
to alleviate the known ecological threat of food limitation, and the 
emerging genetic threat of accumulating inbreeding due to small Ne. 
We show that capacity to alleviate inbreeding depression through 
translocations is limited by ecological constraints attributable to 
food availability, while current supplementary feeding designed to 
alleviate these constraints may on its own be insufficient to ensure 
population viability in the presence of accumulating inbreeding. 
The only strategy that appears capable of achieving population vi-
ability is to ameliorate both inbreeding and food limitation through 
translocations alongside supplementary feeding. Our results there-
fore suggest that managers aiming to maintain the focal population 
must tackle ecological and genetic threats holistically, or risk fail-
ing to achieve management objectives and wasting conservation 
resources.

Our PVA suggests that, with no management, the Scottish 
chough population is likely to go extinct relatively rapidly regard-
less of the magnitude of inbreeding depression (Figure 3a). Rapid 
population decline was also projected with genetic management 
alone (Figure 3b). This concurs with the concept that inbreeding 
depression, and hence the potential for genetic rescue, will be 
minimal in very harsh environments where all individuals have 
low fitness (Figure 1, Waller et al., 2008). Here, outbred offspring 
of matings between translocated and native individuals still ex-
perience high mortality because resources are simply insufficient 
to survive. Indeed, an immigrant into the Isle Royale wolf (Canis 
lupus) population had negligible impact on λ despite increased het-
erozygosity, attributed to poor environmental conditions (Adams, 
Vucetich, Hedrick, Peterson, & Vucetich, 2011). Alternatively, 
genetic rescue may be negligible because most translocated in-
dividuals die before reproducing due to high environmentally‐in-
duced mortality, and hence generate negligible outbreeding. For 
example, Eurasian otter (Lutra lutra) translocations in Sweden re-
sulted in little evidence of genetic rescue, probably due to low 
survival of translocated individuals (Arrendal, Walker, Sundqvist, 
Hellborg, & Vilà, 2004). However, even our simulated large trans-
locations, that ensured some translocated individuals survived 

to reproduce, resulted in little increase in λs (Figure 3b). This im-
plies that genetic rescue may be negligible in choughs because of 
high offspring mortality regardless of Fi, rather than because high 
mortality of translocated individuals would impede outbreeding. 
Thus, our simulations highlight the critical need to ensure ade-
quate habitat quality, or alleviate other ecological constraints, be-
fore attempting translocations to alleviate inbreeding depression.

While available data suggest that current supplementary feed-
ing of Scottish choughs is having valuable positive demographic 
effects (Figure 2, Appendix 6), our PVA suggests that this inter-
vention alone may be insufficient to ensure population viability 
(Figure 3c). Continuing current supplementary feeding without mit-
igating genetic threats may ultimately fail to achieve conservation 
objectives. The only simulated management scenario that achieved 
population viability was simultaneous supplementary feeding 
and translocations. Here, supplementary feeding improved envi-
ronmental quality enough to allow expression of inbreeding de-
pression, meaning that the reduction in inbreeding resulting from 
translocations could increase λs (Figures 1 and 3). Ideally, improve-
ments in environmental quality would be achieved through agri‐
environment schemes that increase the abundance and availability 
of the chough's invertebrate prey, for example through maintaining 
spatio‐temporal diversity in vegetation height and managing anti-
helminthic treatment of livestock to increase dung invertebrates 
(Trask et al., 2019a). Resultant increases in chough prey would 
need to be sufficient to achieve increases in key demographic rates 
comparable to current supplementary feeding. Indeed, our simula-
tions assume that baseline environmental quality, and hence key 
demographic rates, do not deteriorate further. Translocated indi-
viduals were also assumed to experience the same demographic 
rates as existing natives. However, translocated individuals may 
have lower demographic rates than natives, as observed in captive‐
bred individuals (e.g. VanderWerf, Crampton, Diegmann, Atkinson, 
& Leonard, 2014), and thus may have less impact on λs. Ensuring 
viability of the Scottish chough population will therefore require 
ecological management that is sufficient to maintain or improve 
environmental quality and thus achieve high demographic rates of 
both native and translocated individuals, alongside translocations 
from a suitable source population. While concurrent ecological 
and genetic management strategies have been suggested for other 
threatened populations, including greater prairie chickens (Bouzat 
et al., 2009) and tigers (Panthera tigris, Kenney et al., 2014), our 
analyses quantitatively demonstrate the need for such holistic 
approaches.

The scenario of two moderate‐sized translocations and sup-
plementary feeding resulted in stable �s for ~25 years (~3 chough 
generations), due to the joint genetic and demographic benefits 
of translocations alongside supplementary feeding (Appendix 7).
However, �s subsequently decreased due to re‐accumulating in-
breeding (Figure 3d, Appendix 3). Additional simulations showed 
that this can be resolved with a third translocation at year 25 or 
larger initial translocations, thereby ensuring population stabil-
ity over the full 50‐year period (Figure 3d, Appendix 7). A similar 
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pattern of decrease in inbreeding and increase in λ, followed by re-
accumulation of inbreeding, was observed after immigration into a 
Scandinavian wolf population (Liberg et al., 2005); subsequent immi-
gration then caused another decrease in inbreeding and increased λ 
(Akesson et al., 2016). This implies that longer‐term viability of the 
Scottish chough population would require periodic future transloca-
tions, or re‐establishment of population connectivity and dispersal 
that facilitates natural gene‐flow.

Quantitative evaluations of proposed management ap-
proaches may be impeded by the inherent stochasticity of small, 
declining populations (Beissinger & Westphal, 1998). Additionally, 
key demographic and genetic parameters are commonly un-
known; effects cannot be directly estimated for strategies that 
have not yet been implemented, and current strategies are often 
implemented as emergency interventions rather than controlled 
experiments (e.g. Oro, Margalida, Carrete, Heredia, & Donázar, 
2008; Powlesland & Lloyd, 1994, Appendix 6). Our study is valu-
able because the high‐quality demographic data available allows 
such quantitative evaluations of ecological and genetic manage-
ment strategies, including consideration of their interdependence. 
Despite inevitable uncertainty in our model outcomes, the overall 
qualitative conclusions from scenario comparisons seem reason-
ably clear; conditional on model assumptions, simultaneous eco-
logical and genetic management is the only scenario that is likely 
to result in a viable Scottish chough population. Management 
actions should therefore focus on implementing appropriate 
grassland management, complemented with translocations, with 
continued supplementary feeding until grassland management 
has sufficiently improved environmental quality. Decision makers 
must now urgently consider this biological conclusion within a 
wider socio‐economic framework to assess the feasibility of these 
management strategies (Trask et al., 2019a).
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