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With the advent of high energy density (HED) experimental facilities, such as

high-energy lasers and fast Z-pinch, pulsed-power facilities, mm-scale quantities of

matter can be placed in extreme states of density, temperature, and/or velocity.  This has

enabled the emergence of a new class of experimental science, HED laboratory

astrophysics, wherein the properties of matter and the processes that occur under extreme

astrophysical conditions can be examined in the laboratory.  Areas particularly suitable to

this class of experimental astrophysics include the study of opacities relevant to stellar

interiors; equations of state relevant to planetary interiors; strong shock driven nonlinear

hydrodynamics and radiative dynamics, relevant to supernova explosions and subsequent

evolution; protostellar jets and high Mach –number flows; radiatively driven molecular

clouds and nonlinear photoevaporation front dynamics; and photoionized plasmas

relevant to accretion disks around compact objects, such as black holes and neutron stars.



2

Table of Contents:

I.  Introduction 3

II. Facilities and capabilities 6

III. Opacities and Cepheid variables 13

IV. Hydrodynamics of core-collapse supernovae 19

V. Supernova remnants and radiative shocks 35

VI. Protostellar jets and high Mach-number flows 47

VII. Eagle Nebula and photoevaporation front dynamics 53

VIII. Planetary interiors and equations of state 63

IX. Compact object accretion disks and photoionized plasmas 68

X. Outlook for the future 72

References 76

Figure captions 106

Tables 118

Figures 120



3

I.  INTRODUCTION

Over the past two decades, we have seen the emergence of a new experimental

capability in the form of high energy density (HED) facilities.  These include high power

lasers and fast magnetic pinch machines (“z-pinch”), which were developed largely as a

result of the national inertial confinement fusion (ICF) program. [Lindl, 2004; Matzen,

2005].  Hand in hand with the emergence of these HED experimental faciltites came the

realization that a new class of laboratory astrophysics could be pursued. [Ripin, 1990;

Rose, 1991, Remington, 1999; Drake, 1999; Remington, 2000; Takabe, 2001]  This new

class of experimental HED astrophysics is complementary to but distinct from traditional

laboratory astrophysics, such as measurements of low energy nuclear cross sections.  The

new HED facilities allow matter to be placed, reproducibly, in extreme states of

temperature, density, and velocity. Measurements of these conditions and their evolution,

when properly diagnosed, allow theoretical models and computer simulation codes to be

tested under the extreme conditions relevant to HED regimes of astrophysics.  Examples

include measurements of (1) opacities relevant to stellar interiors, [Rogers, 1994, 1998;

Arnett, 2001; Chenais-Popovics, 2002; Bailey, 2002; Wang, 2004] (2) the phase,

conductivity, and equations of state of matter under conditions relevant to planetary

interiors, [Saumon, 2004] (3) scaled, strong-shock-driven turbulent dynamics relevant to

supernova explosions, [Robey, 2003] and (4) ionization states of radiatively pumped

photoionized plasmas relevant to accretion disks surrounding black holes or neutron stars.

[Foord, 2004]  Such measurements allow astrophysical models and large-scale simulation

techniques to be tested and verified under relevant conditions.  In each of these four

areas, astrophysical models and simulations have been tested against HED laboratory
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data under relevant conditions, leading to improvements in the models or modeling

techniques, or a realization of the limitations of the simulation methods.

To achieve the relevant high-temperature, high–pressure, or strong shock

conditions requires focusing macroscopic amounts of energy (E > ~1 kJ) into

microscopic spatial scales (L < ~1 mm) over very short time intervals (δt << 1 µs).  This

allows the heating rates to greatly exceed the losses, resulting in high temperatures,

pressures, and densities.  High energy, pulsed lasers achieve this by their ability to focus

their energy into microscopic volumes over nanosecond time scales.  Magnetic pinch

facilities (z-pinches) achieve this by discharging large currents (> ~ 1 MA) through a

cylindrical can or wire array that then implodes due to the J x B forces.  Upon stagnation

on the axis, the kinetic energy of the imploding wires is converted into  an intense burst

of heat and radiation.  Both approaches for achieving HED conditions in the laboratory

have been developed very successfully over the past two decades.  Sophisticated time-,

spatially-, and spectrally-resolved diagnostics have also been developed. [Landen, 2001;

Koch, 1999; Budil, 1997; Heeter, 2001; Boehly, 1999]  It was only after the deployment

of such diagnostics on these facilities that the field of HED laboratory astrophysics

emerged and has grown..

The connections to astrophysics achievable on these HED facilities have been

pursued vigorously over the past decade, and the rate of progress has been steadily

increasing.  This is the topic of our review article, which is written with two separate

audiences in mind: plasma physicists (such as laser experimenters, for example) and

astrophysicists.  We try to discuss each topic at a level that an interested researcher, not

necessarily expert in the specifics, can still follow the essence of the discussion.  Ample
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references are given, so that more in depth reading can easily be pursued.  In Chap. II, a

discussion of HED facilities is given, along with descriptions of typical classes of

experiments.  Chap. III is dedicated to a discussion of opacities, and their impact on

pulsating stars, such as the Cepheid variables.  We discuss supernovae and supernova

remnants, along with relevant laboratory experiments, in Chaps. IV and V.  Protostellar

jets, high Mach-number flows, and relevant experiments are discussed in Chap. VI.  The

dynamics of photoevaproation fronts in radiatively driven molecular clouds, such as the

Eagle Nebula, are described in Chap. VII.  Planetary interiors, and the properties of

matter under extreme states of pressure and density are the subject of Chap. VIII, and the

radiatively dominated conditions around an accreting compact object are discussed in

Chap. IX.  We conclude with an outlook for the future in Chap. X.
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II.  FACILITIES  AND CAPABILITIES

A. Introduction

The emerging field of high energy density laboratory astrophysics could not have

developed 20 years ago. The necessary energy sources and diagnostic technologies did

not exist. In the present chapter, we provide an overview of the remarkable facilities that

can concentrate energy to levels of MJ/cm3, and then diagnose the results as a function of

time, space, and spectral content.. We begin with a description of pulsed, high-energy

lasers and fast Z pinches and then discuss two examples of typical astrophysics-related

experiments.

B. High-Energy Lasers

A number of high-energy lasers have been constructed during the past 30 years,

motivated by the challenge of achieving “inertial confinement fusion”.  The long-term

goal is to create miniature fusion explosions with an energy gain of about 100.  Such a

laser system begins with a very high-quality laser beam, initially of low energy, which

propagates through and extracts energy from Nd-doped laser glass. The first challenge is

to prevent defects and diffraction from damaging the laser components as the energy per

unit area of the laser beam reaches high levels. The second is to extract a large fraction of

the stored energy. The first challenge was met in the 1970’s, leading to several high-

energy lasers capable of delivering > 1 kJ of laser energy to a target.  The largest of these

lasers include the Omega laser, at the Laboratory for Laser Energetics of the University

of Rochester (Boehly et al., 1995), the Gekko XII laser, at Osaka University in Japan

(Miyanaga et al., 1997), and formerly the Nova laser at the Lawrence Livermore National

Laboratory (Campbell et al., 1986). A number of similar but smaller lasers have also
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contributed to the results discussed below, such as LULI at Ecole Polytechnique in Paris,

France; Nike at Naval Research Laboratory; Vulcan at Rutherford-Appleton Laboratory

near Oxford, England; Trident at Los Alamos National Laborataory; Helen at Atomic

Weapons Establishment laboratory in Aldermaston, England; and Janus at Lawrence

Livermore National Laborataory.

Figure II.1a shows one example of such a laser system, the Omega facility, which

can deliver 30 kJ to a target.  The laser occupies approximately the area of one

(American) football field. The initial laser beam, formed and amplified in the center of

the laser bay, is split, amplified further, and eventually feeds the 60 amplifier chains that

proceed down the sides of the laser bay toward the output end.  Frequency conversion

crystals then triple the frequency of these laser beams, decreasing their wavelength from

1.05 µm to 0.35 µm, and mirrors direct the laser beams toward the center of the target

chamber.  Typical laser pulse durations can range over 0.2 – 5 ns, and shapes can be flat-

topped, Gaussian, or custom-designed shapes.  The beams can be individually pointed

and focused, and within limits, individually timed.  Spot intensity spatial profiles can be

tailored with phase plates, with spot diameters in the range of 0.2 – 1 mm.  Larger spots,

up to ~3 mm diameter, can be achieved by removing the phase plates, and defocusing the

beam.

The second challenge cited above, of using the stored energy more efficiently, is

being met by the National Ignition Facility (NIF), now under construction at Livermore

(Hogan et al., 2001; Miller, 2004; Moses, 2004), and by the Laser MegaJoule (LMJ)

under construction in France (Bettinger and Decroisette, 1999).   For the laser beam to

extract more of the stored energy it must pass through the Nd-doped glass several times,
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without destroying the quality or the focusability of the laser beam.  The NIF and LMJ

laser systems, with 192 and 240 beams, respectively, are anticipated to deliver ~2 MJ of

laser energy to a target.  This will enable the study of larger, hotter systems involving

stronger shock waves and higher energy density configurations.  Important new regimes

will become accessible with these higher energy lasers; as discussed briefly in Chap. X.

C. Fast Z pinches  and other pulsed-power facilities

Pulsed power devices are also proving to be very useful for experiments related to

astrophysics.  A pulsed power machine delivers a large current (and voltage) to a load, in

a short, intense pulse (varying from a few ns to a few hundred ns).  The most common

device driven by pulsed power is a Z pinch [Ryutov et al., 2000].  In a Z pinch, stored

electrical energy drives a large current through a cylindrical conductor, resulting in a

large magnetic pinch force.  This force accelerates the conducting matter inward, causing

it to collide at the center of the pinch, converting kinetic energy to thermal energy, much

of which is radiated as x-rays.

The largest of the existing Z pinch facilities is the “Z” generator at Sandia, shown

in Fig. II.1b, which can generate a current of 20 MA; it is now being refurbished to

increase the current to ~30MA and provide a substantial degree of control over the pulse

shape (Matzen, 2005).  There exist also two 5-10 MA facilities, the Saturn facility at

Sandia, and Angara-5 at Troitsk (Russia), as well as several 1 MA facilities, of which the

MAGPIE generator at the Imperial College (London) is used most actively for

experiments in laboratory astrophysics.

Z-pinch experiments permit several possible applications.   First, by using an

array of hundreds of high-Z wires, one can obtain very efficient conversion of electrical
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energy into thermal x-rays [Sanford et al., 1996]. The Z machine at Sandia National

Laboratories, as shown in Fig. II.1b, for example, can produce nearly 2 MJ of thermal x-

rays at a temperature above 1 million degrees. This x-ray energy can be used to launch a

shock wave, but with much more energy and over a much larger area than is possible in

laser experiments, which can be an advantage [Drake, 2002].  Second, by using many

wires of moderate-Z material, one can produce very large fluxes of Kα x-rays at energies

of a few keV.  This is useful for radiation transport experiments.  Third, by manipulating

the wires themselves, one can produce other effects of interest.  For example, by using a

conical wire array one can produce a jet of material that radiatively collapses and is

relevant to astrophysical jets [Lebedev et al., 2002].

In addition to Z pinches, it has been demonstrated that pulsed power devices can

use J x B forces to accelerate flyer plates.  Specifically, the Z machine has accelerated 9

mm square, 0.35 mm thick plates of Al to velocities above 20 km/s [Knudson et al.,

2001, 2003].  Used as flier plates, this permits equation of state experiments at pressures

above a Mbar (1012 dynes/cm2), which, together with work done on lasers, is directly

relevant to the interiors of gas giant planets.

D. Astrophysics Experiments

The experiments discussed in this article typically use one of two basic methods.

In “hohlraum” experiments, known in inertial fusion as “indirect drive”, a number of

laser beams are used to irradiate the inner surface of a cavity made of a high-Z material;

the beams penetrate the cavity through several (small) holes. This is a hohlraum.

Energies of tens of kJ heat few-mm-scale hohlraums to temperatures of kT = 100-200 eV.

The experimental package may be located inside the hohlraum, to locate a sample within
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a uniform x-ray environment, outside the hohlraum, to control the orientation of the x-ray

flux to it, or on the side of the hohlraum, to produce planar acceleration of the package.

Many such experiments begin with the use of ablation by the soft x-rays the hohlraum

contains, in order to create a pressure that drives a shock wave into some material.  Other

experiments are designed so that the x-rays in the hohlraum penetrate and heat the

material to be studied.

The hohlraum geometry can also be created in the z-pinch diode. In this case, the

fast pinch is formed on the axis of the hohlraum. The experimental package can be

situated either inside the hohlraum, or on its surface; secondary hohlraums can also be

used (See Sec. VIII.B in Ryutov, Derzon, Matzen, 2000).  An experiment using a z-pinch

driven primary plus secondary hohlraum is shown in Fig. II.2a.  This experiment, which

is discussed further in Chap. III, measured the opacity of iron under conditions relevant to

stellar envelopes, and was directly relevant to reducing the uncertainties in the models of

pulsating stars, the so-called Cepheid Variables. [Springer, 1997]  The z pinch at the

Saturn pulsed power facility at SNLA drove concentric primary and secondary

cylindrical hohlraums.  An iron sample placed in the secondary hohlraum was heated to

equilibrium temperatures of ~20 eV at a density of ~10-4 g/cm3.  Using a high

transmission grating spectrometer, the transmission of broad band x rays, from the

Planckian hohlraum radiation field, through the sample was spectrally recorded, which

allowed the opacity of Fe to be determined with high spectral resolution, as shown in Fig.

II.2b.  This data set was used to test models of the opacity of Fe under stellar envelope

conditions.
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The other typical setting is a so-called “direct drive” setting, used on high

intensity lasers (not on z pinches), where the laser beams are focused directly on the

experimental target.  Figure II.2c and II.2d illustrates such an experiment at the Omega

laser. The Omega system was built to study “direct drive” laser fusion, in which the laser

beams directly strike a capsule, causing it to implode and produce fusion.  This explains

the large number of beams (60) and their even distribution (Fig. II.1). On Omega, a

planar shock can be launched using at most 12 (of the 60) beams, only 6 of which are

close enough to normally incident to be strongly effective.  In this case the ablation by

the laser irradiation creates the pressure that launches the shock to initiate the experiment.

The experiment shown in Fig. II.2.c shows a ~120 µm diameter solid Cu sphere

embedded in a solid plastic cylindrical tube. [Robey, 2002; Klein, 2000, 2003]  The laser

drive launches a strong shock down the tube of CH (ρ ~1 g/cm3), which has decayed to

Pshk ~12 Mbar by the time it reaches the location of the Cu sphere.  Upon passage through

the Cu sphere, the shock compresses it, and induces vortical flow, morphologically

similar to a smoke ring.  The evolution of this shock-sphere dynamics is captured in a

sequence of side-on x-ray shadowgraph images (radiographs), shown in Fig. II.2d.  The

gold spatial resolution grid shown in the upper left-hand corner of the images has a grid

spacing of 63.5 µm., and is used to simultaneously measure magnification and spatial

resolution of the x-ray imaging camera used.  This experiment is discussed in more detail

in Chap. V.

In many experiments, whether hohlraums or direct laser irradiation are used,

additional laser beams produce x-rays for diagnostic purposes.  In fact, one often uses

more laser beams for this purpose than to drive the experiment.  Some of the beams may
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be used to irradiate a small spot on a material plate, situated behind the experimental

package and known as a backlighter.  Under laser irradiation, this plate produces

energetic x-rays, typically in an emission line or band.  The x-ray energy is chosen so that

components or structures in the target selectively absorb these x-rays.  When they are

imaged onto a detector, the result is a radiograph of the target not unlike the chest x-ray a

doctor may request.  In addition, these diagnostic x-rays can also be used for absorption

spectroscopy or for time-resolved measurements.  We will describe below the results

from a wide variety of experiments utilizing similar techniques as those illustrated in Fig.

II.2.  The specific configuration and diagnostic details of each individual experiment

presented will not be discussed in any depth, to allow a wider selection of results to be

shown.  Details for each specific experiment can be found in the references.
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III.  OPACITIES AND CEPHEID VARIABLES

Understanding the evolution of stars from birth to death forms one of the

fundamental challenges facing astronomers and astrophysics.  A star begins from an

initial “rapid” (several x 106 yrs) gravitational collapse of a dense clump in a molecular

cloud, in a region where the Jean’s (gravitational) instability dominates other dynamics

[eg., τJeans = (4πGρ)1/2 < other dynamic time scales in the cloud].  If the mass of the star

exceeds about 0.1MSun, the central temperature and density reach the point where

thermonuclear fusion of hydrogen into helium becomes the dominant energy source.  At

this point, the star settles into its main sequence phase in the Hertzsprung-Russell (HR)

diagram (a plot of luminosity versus temperature or equivalently, magnitude versus

spectral type). [Hansen & Kawaler, 1995; Bohm-Vitense, 1989]  When approximately

10% of a star’s original hydrogen is converted to helium, hydrogen depletion in the core

starts to become significant.  At this point, the careful balance between core-generated

thermal pressure due to nuclear burning and the inwardly directed gravitational force is

perturbed, upsetting the condition of hydrostatic equilibrium, and the core starts to

contract.  This contraction increases the temperature and density to the point where

helium burning begins, leading to a corresponding rise in the energy generation rate and

luminosity.  The star enters its “blue-loop” phase.

If the star is sufficiently massive, M ≥ 5MSun, its blue loop excursion is

sufficiently large that its path on the HR diagram crosses, and more importantly, lingers

in the Cepheid instability strip, shown in Fig. III.1a. [Bohm-Vitense, 1989]  In this phase,

an interesting global dynamics can occur, namely, stellar pulsation.  All stars in this strip

are observed to pulsate, with luminosities varying by factors of up to 2 or 3 over periods
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of days to weeks.   The classical Cepheids refer to the δ Cephei supergiant stars, which

are the brightest in this class of variable stars.  Several other classes of stars also fall into

the Cepheid instability strip and are variable, such as the RR Lyrae, δ Scuti, and W

Virginis variables.  Understanding the mechanisms underlying such stellar pulsations has

been an ongoing challenge in astophysics.

A remarkable feature of Cepheid variable stars is that their pulsation periods, P,

are proportional to their average luminosities, as shown in Fig. III.1b. [Bohm-Vitense,

1989]  Stellar pulsations result from a driven resonant standing compression wave of the

star.  Bigger stars are more luminous, and by virtue of their larger size, will have longer

periods of pulsation.  This relationship can be expressed as

P
Q

sun

=
( / ) /ρ ρ 1 2

where Q is a constant, ρ  is the average density of the pulsating star, and ρsun  is the

average density of the sun, ρsun g cm≈1 4 3. /  .  For a given mass, (spatially) larger stars are

more luminous, have lower average density, and longer period of oscillation, hence the

luminosity-period correlation.

The criteria to set up a global standing wave in a star is based on hitting a

resonance between a driving force and one or several normal modes of oscillation

(pulsation) in the star.  Consider first a fictitious adiabatic star, [Bohm-Vitense, 1989] and

assume a small pulsation randomly began, say, near to the convection layer.  At peak

compression, the temperature would be maximum, due to the P.dV work done on the star

by gravity.  At peak expansion, the temperature would be minimum, due to the P.dV

work done by the star on itself by expanding.  Radially outward velocity would be

maximum at the equilibrium radius as the star was expanding outwards.  If the star were
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truly adiabatic, this pulsation would continue forever, never growing (or decreasing) in

amplitude.  This would definitely not lead to the large global pulsations of ~20% in

radius characteristic of Cepheid variable stars.  To generate a global pulsation requires a

resonant driving force, a condition that can result from a nonadiabatic heat flow. Similar

to pushing a swing at its resonance frequency, as the star leaves peak compression and

moves into its expansion phase, e.g., near the point of peak outward velocity, there needs

to be a  slightly increased outward push.  This can be due, in this case, to a higher interior

temperature and hence, higher pressure.  This added outward push in phase with the

oscillation causes the pulsation amplitude to increase, leading to a variable star.  The

resulting phase relations are shown in Fig. III.1c for a δ Cephei star, showing periodic

oscillations of magnitude, temperature, spectral type, radial velocity, and radius.  Notice

that radial velocity peaks in phase with temperature, which is proportional to pressure,

and which occurs just after the star leaves peak compression (∆R = 0), and starts to

expand.

Opacity plays a key role in causing this resonant temperature enhancement.  For a

solar mixture of H, He, and “metals” (Z ≥ 3), the Rosseland mean opacity is shown as a

function of temperature, for a constant value of ρ/T3, in Fig. III.2a. [Rogers, 1994]  There

are bumps or broad peaks in the average opacity as temperature is increased,

corresponding to thermal energies sufficient to excite or ionize H, He, and the higher-Z

metals through their various electron shells.  On the rising side of one of these bumps

(sometimes called “κ mountains”), resonant conditions can occur in the heat flow that can

lead to stellar pulsations.  As the star contracts, the temperature rises, increasing the

opacity, which allows less radiative heat from the core to leak out, raising the temperature
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and pressure even further.  This leads to a slightly enhanced outward push as the start

starts its outward movement, in resonance with the oscillatory motion of the star.  Near

peak expansion, the temperature drops due to the work done by the star on itself.  This

lowers the opacity, allowing more radiative heat to leak out, dropping the interior

pressure, allowing the star to contract more strongly.  The result is that in this resonant

condition, the amplitude of global oscillation increases, leading to a pulsating star.  These

pulsations do not increase in amplitude indefinitely, however.  Once the pulsation

amplitudes become large enough that the heating during compression takes the opacity

over the top of the “κ mountain”, the opacity drops on compression, allowing radiation to

leak out, and serving as a damping mechanism.

There is an intimate connection between stellar pulsation period and opacity.  The

global oscillations are standing sound (compression) waves in the star, so period must be

proportional to the ratio of star diameter to average sound speed.  But sound speed varies

with temperature as T1/2.  Since a higher stellar opacity holds in heat by inhibiting

radiative heat losses, temperature is a monotonically increasing function of opacity.  The

result is that an increased stellar opacity leads to a shorter period of pulsation.  This is

summarized by writing the following approximate relation for stellar oscillation period,

P
D

c

D

T

Dstar

s

star star
n

∝ ∝ ∝1 2 2/ /κ

where Dstar and cs correspond to the stellar diameter and average sound speed.  For

simplicity, we have assumed, over a small enough interval of temperature on the rising

side of the bump, that κ ~ Tm, and n = 1/m.    This period-opacity relation is portrayed

rather dramatically in a plot of the period of oscillation of the second harmonic (P1)

versus the period of the fundamental mode (P0) for beat Cepheids, shown in Fig. III.2b.
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Using old opacities, which did not include all the relevant transitions for the metals, in

particular Fe, the calculated opacities were too low and the calculated pulsation periods

were too large. [Cox, 1976]  When a more complete accounting of the Fe opacities was

taken in OPAL, [Iglesias, 1991; Rogers, 1992] the calculated periods for the beat

Cepheids were brought into much better agreement with observations, as shown in Fig.

III.2b.

Opacity calculations are enormously complex, especially for higher Z materials

(Z > several).  The OPAL calculations have been improved by comparison with

experiments under a variety of conditions, as shown in Figs. III.2c and III.2d.  In one of

the first Fe opacity measurements, done on the Nova laser, one laser beam with a

wavelength of 0.53 µm was used to heat a 250 nm thick Au foil by direct irradiation with

a square 1-ns pulse of 3.3 kJ. [Da Silva, 1992]  The x-ray flux thus generated

volumetrically heated and expanded a 20 nm sample of Fe to a temperature of ~35 eV at

densities of  ~10 mg/cm3.  A second laser beam with a 2-ns square pulse of 0.53 µm light

irradiated a second Au foil, generating backlighter x-rays whose transmission through the

sample was measured with a time-resolved (“streaked”) XUV spectrometer.  The

measured Fe transmission spectrum, shown in Fig. III.2c, showed a dominant absorption

feature centered at 70 eV, corresponding to an important ∆n = 0 (n = 3 to n = 3)

transition, overlooked in previous opacity calculations, such as that shown by the upper

curve corresponding to a DCA calculation. [Cox, 1976; Rogers, 1994]  The newer

OPAL-DTA calculations, including term splitting, [Iglesias, 1991; Rogers, 1992]

reproduce this feature quite well.  Transitions such as this, missing in previous opacity

calculations, leadsto the enhanced opacities in the models of beat Cepheid variables, that
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allow the models to more closely reproduce the observed pulsation frequencies, as shown

in Fig. III.2b.

Opacity models differ more significantly at lower densities, ρ < 1 mg/cm3, where

density induced line broadening and smearing is lower.  Under these conditions, “forests”

of fine-structure transitions can be resolved experimentally  The time scales to achieve

steady-state, LTE conditions at lower densities, however, is longer.  In this regime, large

Z-pinch facilities offer a more attractive setting for such opacity measurements.  Their

characteristic time and spatial scales are longer.  An example of a key opacity experiment

done on Fe on the Saturn z-pinch facility is shown in Fig. III.2d. [Springer, 1997]  In this

experiment, the 9 MA Saturn z-pinch was used to drive a primary hohlraum to Tr = 70

eV. This, in turn, drove a much larger secondary hohlraum to 20 eV.  The Fe samples

under investigation were located in the secondary hohlraum, and attained steady-state

ionization conditions at Te = 20 eV and ρ = 10-5 g/cm3, over a period of ~50 ns.  A time-

gated transmission grating spectrometer measured the spectrum of black-body radiation

transmitted through the Fe sample.  This was then compared with predictions of various

LTE opacity models, as shown in Fig. III.2d.  The STA model, [Bar Shalom, 1989]

which averages over large groups of configurations, overpredicts the transmission data in

this regime, whereas the UTA model [Iglesias, 1994] underpredicts the data.  The OPAL

calculation, [Iglesias, 1991; Rogers, 1992] which capture the complex arrays of fine-

structure absorption lines, falls in between in the figure, and is in much better agreement

with the data (shown in Fig. III.2b).  Experimental measurements such as those shown in

Figs. III.2c and III.2d are indispensable in refining and “calibrating” sophisticated opacity

models such as OPAL.
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IV. HYDRODYNAMICS OF CORE-COLLAPSE SUPERNOVAE

A. Introduction

Supernovae (SNe) involve a very broad range of physical processes.  Their

description requires the use of very diverse areas of science such as particle physics,

general relativity, and hydrodynamic stability and turbulence. Furthermore, there are

several types of SNe, with different mechanisms of energy release.

The kinetic energy release in a typical SN event is ~1051 erg, of which only a few

percent is emitted as visible light. Still, supernovae can often be brighter than their entire

host galaxy. The light as detected by optical telescopes does not come from the core,

where the energy release has occurred, but rather from a photosphere, which is heated by

a complex combination of hydrodynamic flows and radiative transport. The connection

between the energy release in the SN core and the visible light curve requires an accurate

description of of material and radiation transport. Opacities in particular play a critical

role in modeling radiation transport. In this area, laboratory experiments are making

significant contributions by providing direct measurements under  conditions relevant to

the actual astrophysical problem.

A nice description of the SN phenomenology, as well as existing theories of their

formation, can be found, e.g., in the book by Arnett (1996). Other papers of general

interest include Bethe (1990), Woosley (1990), and Woosley and Eastman (1997). Some

more recent surveys can be found in “Cosmic Explosions” (Proc. 10th Astrophysical

Conference, College Park, Maryland, 1999, AIP Conference Proceedings # 522).
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Supernovae are believed to explode by two fundamental mechanisms: collapse of

the core (in large stars) and thermonuclear explosion (in small stars below 8 solar masses

at birth).  The classification into types is based on spectra and is too involved to discuss

here.  We will focus on only the predominant core-collapse SNe (Type II) and the

predominant thermonuclear SNe (Type Ia). Type II SNe are thought to occur as the result

of a gravitational collapse and neutronization of the iron core of the star; their formation

is accompanied by the generation of a short but very intense burst of neutrinos, which

carry away some 99% of the released energy. The energy deposited from the neutrinos

initiates a blast wave near the center of the progenitor star, which ultimately blows the

star apart, giving rise to a tremendous increase of luminosity. The collapsed core forms a

neutron star that might later be detected as a pulsar.  The experiments discussed in

Sections C-E are relevant to Type II SNe.

 Type Ia SNe are believed to be caused by a thermonuclear burn of carbon-oxygen

white dwarfs. One of the key problems in the physics of this system is a propagation of

“flame” from the ignition point, specifically, the stability of the flame and its transition

from a sub-sonic burn (deflagration) to a supersonic detonation.  There is a significant

amount of information on these issues obtained in the experiments with propagation of

chemical flames, summarized in particular by Williams (1985), with more recent work

involving Khokhlov and others reviewed by Drake (1999). In the present experiments on

existing high-power lasers, it seems unlikely that conditions for the thermonuclear burn

of a DT mixture and propagation of ignition from a hot spot can be reached. Such

conditions perhaps will be reached with the NIF and the Laser Megajoule facilities that

are now under construction (see Sec. II). Type Ia SNe are used as “standardized candles”
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to measure the distances to high-redshift galaxies, and provide the essential data

supporting the present conclusion that the expansion of the universe  is accelerating

(Kirschner, 1999; Perlmutter et al, 1999).

Among the broad array of problems related to SN explosions, we shall

concentrate mainly on the laboratory simulation of hydrodynamic phenomena in Type II

SN explosions. We choose this subset because  multi-dimensional hydrodynamic effects

are thought to be very important (see Sec. IV.B for more detail) and  there already exist

successful experiments of this type, related to the shock breakout through the He-H

interface. In addition, the analysis of the scalability and other constraints can be nicely

illustrated; this example can serve as a template for similar analyses of the other

problems.  At the conclusion of this section, we shall mention the role played by opacities

and radiation transport in the SN light curve.

B. Multidimensional Hydrodynamics in Core-Collapse Supernovae

It is believed that the progenitor star, just before the SN explosion, has a layered

(“onion-skin”) structure, with a dense core of higher Z elements (Z > 2) surrounded by

layers of helium and hydrogen (Fig. IV.1 from Shigeyama and Nomoto, 1990)  The

observed light-curve for the most famous recent supernova in the Large Magellanic

Cloud, SN 1987A, is shown in Fig. IV.2.

Theoretical analyses have shown that it is impossible to explain the explosion of

Type II SNe without taking into account 2D and 3D hydrodynamic effects. The energy

deposition by neutrinos in the zone surrounding the collapsing core is insufficient, in a

spherically-symmetric case, to drive the explosion of the outer layers of the star.
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Complex non-spherically-symmetric motions must be involved, and only their inclusion

(in a phenomenological manner) by Bethe and Wilson (1985) allowed a plausible model

for supernova explosions to be created.

Another problem where 3D motions are important is the post-collapse mix of the

inner parts of the star, mainly heavy elements into the outer parts, mainly hydrogen and

helium. The observed early appearance of heavy elements (like Ni56 and Co56) in the

photosphere of SN 1987A (see Sutherland, 1990, and references therein) is incompatible

with a spherically symmetric expansion; a lot of effort has been spent on developing a

mix theory based on the Rayleigh-Taylor (RT) instability. The results of a high resolution

2D core-collapse SN simulation, shown in Figure IV. 3, (Kifonides et al., 2000)

illustrates the spikes produced in the strongly nonlinear stage of the RT instability.  A

principal motivation of the experiments discussed below is to test multidimensional

simulations of the RT instability in the deep nonlinear to turbulent regime, due to the

failure of such simulations to explain the SN observations.  Two possibilities follow: the

simulations might be in error or other physics might be responsible for the observations.

Well-scaled experiments have shown that the simulations are probably correct with

regard to the large-scale RT behavior.

However, the experiments have also led to the realization that hydrodynamic

turbulence might affect the behavior of SNe in ways the simulations cannot reproduce.

This is one example of other physics with the potential to affect the observed quantities.

Experiments now underway are addressing this possibility.  Another example of other

physics is provided by spectropolarimetric observations of SNe, which allow an

evaluation of the asphericity of the explosion.  These studies have shown that between
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two weeks and two months after the explosion, most SNe manifest gross deviations from

spherical symmetry (Jeffery 1991; Trammell et al., 1993; Tran et al., 1997; Leonard et

al., 2000). These observations lead to the realization that the collapse of a rotating,

magnetized stellar core might produce polar jets that would perforate the outer layers and

quickly reach the photosphere, thereby providing one more explanation to the early

arrival of heavy elements in the photosphere (Fryer, 1999). A strong enough magnetic

field can break the spherical symmetry and may generate MHD instabilities that are

typically 3-dimensional and might produce such jets (LeBlanc and Wilson 1970; Spruit

1999; Wheeler et al. 2000, Fryer and Heger 2000, Reinhardt et al. 2001). This motivated

recent hydrodynamic calculations of jet-driven SNe explosions by Khokhlov et al.

(1999); Fig. IV.4 shows one of their results.  Well-scaled hydrodynamic experiments

relevant to this model are also now underway.

The importance of non-spherically-symmetric hydrodynamics is also shown by

the fact that neutron stars usually receive a strong “kick” during the explosion that creates

them (Cordes, Romani, Lundgren, 1993; Lyne and Lorimer, 1993). This seems to imply

that there are significant gross asymmetries at the early stage of the implosion, which are

enhanced in the course of the implosion (Burrows and Hayes, 1996; Fryer, Burrows, and

Benz, 1998).  In addition, relatively little is known about the effects of rotation. The

angular velocity of a progenitor varies both in radius and in the polar angle. The velocity

shear will grow during the implosion, causing the development of shear-flow-induced

turbulence, whose effect on the mix during the implosion may be an important factor

(Heger, Langer, and Woosley, 2000).
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In summary, there are several complex and still unresolved hydrodynamic

problems which have a fundamental impact on our understanding of supernovae, from

the actual explosion mechanism through the late-time observables. A concerted effort on

these problems, theoretically, computationally, and experimentally, is necessary to make

further progress on the “SN problem”.

C. A sample problem: shock wave breakout through the He-H interface

The problem of shock wave breakout through the He-H interface can serve as a

test-bed for designing scaled laboratory astrophysics experiments. It allows one to clearly

identify the most important steps leading to the formulation of a scaled laboratory

experiment. These steps, which will be described in more detail in the following

subsections, are: 1) making sure that a hydrodynamic description is adequate; 2)

evaluating the role of nonhydrodynamic transport processes (such as heat conduction); 3)

determine the equation of state; 4) characterizing the initial conditions; and 5)

considering whether some simplification in geometry is possible (e.g., can some time

interval of evolution of a planar system adequately describe the evolution of a spherically

divergent system).

As a representative set of plasma parameters in the He-H transition region in SN

1987A (Table IV.1), we have chosen a set of parameters similar to those described in

Müller, Fryxell, Arnett (1991). In Table IV.1, L is the density gradient scale-length, v is

the characteristic velocity, T is the plasma temperature (the electron and ion temperatures

are equal), and ρ is the plasma density.  The blast wave that blows the star apart first

accelerates and then decelerates the transition region.  During the deceleration the
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pressure gradient is outward.  Because this opposes the inward density gradient, the

transitional zone is RT unstable. The characteristic acceleration experienced  by a given

fluid element after the transit  of the blast wave can be  estimated as v/τ, with τ ~L/v, to

be v2/L~2.5⋅105 cm/s2. The gravitational acceleration is orders of magnitude smaller, and

is also negligible in the laboratory experiment to be discussed.  The representative

parameters of the first laboratory experiment simulating the He-H interface instability

(Remington, 1997) are those listed in the lowest row of TABLE IV.1.

We will now quickly go through the five questions formulated at the beginning of

this section. As was shown in Ryutov et al, 1999, the hydrodynamic description applies

to both systems, although in the case of a supernova the pressure is dominated by

radiation, whereas in the laboratory experiment it is dominated by the gaseous pressure.

The viscosity and thermal conductivity are small (i.e., the Reynolds and Peclet numbers

are large). Under such circumstances, both systems can be adequately described by the

Euler equations (e.g., Landau and Lifshitz, 1987).

The dominance of the radiation pressure in the case of the supernova means that

the equation of state is that for the ideal gas with the adiabatic index γ=4/3. It is desirable

that the materials used in the laboratory experiment have equations of state deviating not

too strongly from that for the polytropic gas with γ=4/3., Even if some deviations are

present, however, one should not expect the appearance of any dramatic differences,

because the Euler equations are structurally stable with respect to moderate variations of

γ.

Setting up appropriate initial conditions for simulating 2D and 3D dynamics is

usually based on the analysis of 1D simulations, which determine the background
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conditions for  2D and 3D perturbation evolution. There exist numerous simulations

describing propagation of the shock through the He-H interface (e.g., Muller, Fryxell,

Arnett, 1991; Kane et al., 2000). In their 1D version, all are quite reliable and all present

a similar picture of the distribution of main hydrodynamic parameters that is needed as a

background for the studying 2D and 3D hydrodynamics. An example of density and

pressure versus position across the He-H interface after shock passage (t ~ 2000 s) from

such a 1D simulation is shown on Fig. IV.5a.

In the laboratory experiment, the experimental package is driven by the ablation

pressure produced by the absorption of the intense radiation on one of the sides of the

package. By changing the power and temporal shape of the laser pulse, the time

dependence of the ablation pressure can be varied, within limits. The temporal evolution

of the shock wave strength and the density and pressure distribution near the RT unstable

interface can therefore be tailored. One can also vary the materials constituting the

package and thickness of the layers. Figure IV.5b shows, at t = 20 ns,  the profiles for

density and pressure versus position across the interface between copper and plastic

obtained in this way. Indeed, these distributions are quite similar to those expected in SN

(Fig. IV5.a). The temporal dependence of the parameters in the simulation experiment

can be adjusted to resemble that of a supernova to a high degree of accuracy. This is

illustrated on Fig. IV.5c (Kane, 1999).

In the experiment by Remington et al. (1997) which will be described in more

detail in Sec. IV.E, a planar geometry was used. This means that this particular

experiment can imitate the real system for a limited interval of time, within which the

radius of the He-H interface has not changed by more than 20% or so. This, in turn,
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means that only relatively short-wavelength perturbations can be simulated. Fig. IV.5d

shows a radiograph from this experiment. Later on,  experiments in  divergent  geometry

have also been demonstrated (see below).

D. Issues of the hydrodynamic similarity.

One attraction of using laboratory experiments to assess the difference between

2D and 3D SN hydrodynamics is the ability to control and vary the initial conditions,

repeating an experiment as many times as needed, and deploying as many time-resolved

diagnostics as required.  An additional requirement is that hydrodynamic similarity be

maintained in the key parameters throughout the experiment, despite the 10-20 orders of

magnitude differences in spatial and temporal scales.

A detailed analysis of the hydrodynamic and magnetohydrodynamic similarity

constraints is available (Ryutov et al, 1999, 2000a, 2001, 2002). This analysis has shown

that the similarity constraints can be relatively easily satisfied within the framework of a

so called Euler similarity, which holds provided the Reynolds and Peclet numbers are

sufficiently large in both systems. The similarity holds for the spatial scales larger than

the dissipative scale ∆diss, which is typically small compared to the global scale L.

We now briefly discuss the possible role of small-scale vortices. In the Rayleigh-

Taylor (RT) instability driven by the onset of an accelerating motion, dissipation-scale

vortices do not appear instantaneously: it takes several eddy turn-over times at the global

scale (several L/v) for them to appear. In other words, the Euler similarity (with

dissipative terms neglected) will correctly describe the early stage of the instability

evolution, until small-scale vortices  are formed. [We are referring to smooth transition
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layers, with a density scale-length L. If one deals with a sharp (zero-scale) transition,

small-scale perturbations may appear early in the pulse]. During this early stage there is

no need to make any assumptions about the turbulent viscosity, or introduce Reynolds

stresses, and other approximate descriptions. The Euler equations correctly describe this

stage of evolution, including the formation of smaller-scale vortices. In a number of

cases, including the SN explosion and its laboratory simulation, this means that

essentially the whole physical process is correctly described by  the Euler equations, with

viscosity neglected. Within this time interval, ~ several L/v, the system already reaches a

very different state of  strong mixing.

It is interesting, however, to assess what would happen later in time. To what

extent will the behavior of the two systems be similar at the larger scales, if their

Reynolds numbers, albeit very large, are different in the two systems (meaning that

relative values of the dissipative scales are different). The differences on the global scale

will be not very large; they will probably appear in  terms of order  lnRe.  this behavior

has been observed in a number of relevant problems exhaustively studied experimentally.

Examples include turbulent pipe flow (e.g., Landau, Lifshitz, 1987),  and  turbulent flow

past a localized object at high Reynolds number. (See Cantwell, 1981, Van Dyke, 1982,

and Gjevik, 1980 for excellent pictures of such flows over a broad range of Reynolds

numbers.) The issue of the development of dissipative scales in  laboratory experiments

has been discussed recently by Dimotakis, 2000 and Robey, 2003a,b, 2004.

This problem warrants  further study. Insights may be possible by carrying out a

set of experiments related to each other by a broader (than the Euler) similarity, a so-

called “perfect similarity,” (Ryutov, Remington, 2003a,b). where even the dissipation
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scale would be perfectly mapped from one experiment to another. As this requires a large

change of the drive energy, the  advent of the NIF lasere or the ZR magnetic pinch

facility may open up this possibility, although  further progress in diagnostic

development may also allow one to obtain  useful information on smaller-scale facilities.

E.  Experiments on Supernovae Type II hydrodynamics.

For the past several years, a team of researchers has conducted a series of

experiments aimed at the problem of RT instabilities at the H-He interface.  The point of

these experiments is to observe the dynamics of this process in a well-scaled

environment.  In the context of the results, one can then ask whether the simulation codes

in fact calculate the deeply nonlinear behavior of the RT instability correctly, and

whether any other physics, not present in the simulations, appears in the experiments.  All

these experiments begin by producing a shock wave, as discussed above, applying the

initial ablation pressure either through direct laser irradiation or through x-ray irradiation

(see Ch. II).  The subsequent structure in the target then determines which aspects of RT

dynamics are being explored.

The first such experiments (Remington et al., 1997; Kane et al., 1997, 1998,

1999a, 2000) used the Nova laser to examine RT growth from a single-mode initial

perturbation at a planar interface. The target structure involved a  85-µm-thick Cu layer

followed by 500 µm of plastic (CH2 at ρ=0.95 g/cm3). The profiles of density and

pressure 20 ns after the laser pulse began are shown in Fig. IV.5b.  The Cu-plastic

interface was rippled by a sinusoidal perturbation with a 200-µm wavelength and a 20-

µm amplitude. Figure IV.5d shows a radiograph of the resulting structure at 33 ns.  The
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distance from the valleys to the peaks in the observed modulations (known as the

“bubble-to-spike” distance) has become equal to the initial wavelength of 200 µm.  This

is very nonlinear indeed.  Simulations, using the astrophysical code PROMETHEUS

(Fryxell, Muller, and Arnett, 1991; Arnett, 1988) and the laboratory code CALE (Tipton,

1990), reproduced this result, but the details of the structures did not strongly resemble

what seems to be present in the rather poorly resolved data obtained in this first attempt.

Subsequent experiments (Robey et al., 2001) have both improved the quality of

the data and explored other aspects of RT dynamics, using the Omega laser.  One aspect

explored has been RT grown in diverging systems, both cylindrical (Budil, 2000) and

spherical (Drake et al., 2002).  In the spherically expanding case, a hemispherical plastic

capsule (of density 1.37 g/cm3, inside radius 220 µm, and thickness 110 µm) was

irradiated from the inside.  It included a patch of Ge-doped plastic as a tracer for

radiography, and was in some cases modulated with an initial mode (70 µm wavelength,

10 µm peak-to-valley amplitude). The capsule was mated to a large volume of low-

density (50 –100 mg/cm3) foam. The unmodulated capsule retained its shape while

expanding nearly a factor of 3 in radius.  The modulated capsules developed highly

nonlinear structures.  This experiment was simulated using CALE and the front-tracking

hydrodynamic code FronTier (Glimm, Grove, and Zhang, 2001).  Here again, and in the

presence of better data, the simulations reproduced the qualitative features but not the

exact quantitative details.

Another aspect of RT dynamics explored by experiments has been the coupling

between interfaces.  In an exploding star, the initial modulations of any inner interface

introduce structure into the blast wave that can affect those interfaces outside it.  The
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experiment to examine this (Kane, et al., 2001) used the target structure shown in Fig.

IV.6a, with details described in the caption.  This produced data shown in Fig. IV.6b.

One can see the Cu spikes, extending upward from below, and the modulations in the

second interface, made visible by the tracer strip in the plastic below the interface.

Detailed simulations of this experiment were carried out as part of a validation study

(Calder et al., 2002, 2004) for the next-generation astrophysical code FLASH, which

includes adaptive grids and other advanced features. Comparison of the simulation results

with the experimental images (Fig. IV.6b) supports the same conclusion as in the

previous cases.  The qualitative features of the data are reproduced very well by the

simulations.  Quantitatively, several details are not accurately reproduced, including the

exact spike length, the height of the structuring in the interface, and the behavior at the

edges of the system. In the specific case of the FLASH simulations, the length of the Cu

spikes was found to change with the number of levels of refinement in the simulation, but

did not appear to be converging toward the experimental value.

Experiments on the development of multi-mode perturbations and transition to a

turbulent mix at the interface have been carried out and analyzed in the context of their

correspondence to the code results, Robey et al., 2003; Miles et al. 2004a,b. In Robey et

al., 2003, the evolution of up to eight modes has been observed, and simulations in Miles,

2004a (Fig. IV.7) are in a reasonable agreement down to the scales determined by the

experimental resolution, which is ~ 10 microns (compared to the fundamental mode

wavelength of 50 microns). In Miles 2004b, the instability was driven by a strong blast

wave, giving rise to a Mach number for the growing perturbations as high as 0.1.
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Surprisingly, in this case, the instability “remembers” small-scale details of the initial

conditions well into the nonlinear stage of the evolution.

The development of experimental capability has allowed experimentalists to

follow the evolution of the Rayleigh-Taylor instability into the turbulent regime. In the

papers by Robey et al. (2003) and Drake et al. (2004a) the experiment is described where

3D initial perturbations formed an “egg-crate” structure on the foam-plastic interface

whose stability was in question (the distance between the  nodes was 71 µm). After the

passage of the shock, this interface experienced a long period of deceleration that led to

developing of a deeply nonlinear 3-dimensional Rayleigh-Taylor structure (Fig. IV.8, left

panel). According to Robey et al. (2003), the disappearance of the sharp transitions

between bubbles and spikes that is visible on the second and third panels may be

explained by the development of smaller-scale vortices, although, possibly, not yet

reaching the dissipation scale. Another interesting aspect reported in Drake et al. (2004)

is that the spikes can overtake the shock wave. This result was unanticipated by prior

simulations and models. Tentative explanations are related to the generation of additional

vorticity, triggered by some imperfections of the targets created during the machining

process, and to interactions between the spike tips.

It is reasonable to ask what the implications of the experiments to date are for the

questions asked above.  It has been shown in several experiments that the simulations

correctly calculate the global features of deeply nonlinear RT dynamics. The details,

however, are not precisely reproduced and obtaining the level of agreement shown often

requires iteration of the simulation. Even so, from the point of view of such global
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processes, it would appear unlikely that the simulations are sufficiently in error to explain

the observations from SN 1987A.

As to whether other physics appears that the codes do not address, the answer is

twofold.  At the level of these simple yet deeply nonlinear systems, other physics does

not appear. The issue of the effect of the Reynolds number, which, although very large in

both laboratory and astrophysics, differs substantially between the two systems, is more

subtle.  There is a chance that this question will also be solved in the near future.

F.  Opacities and radiation transport relevant to supernovae

Exploding stars, ie, SNe, create a homologous expansion, where each radiating

region resides in a velocity gradient and sees plasma receding from it in all directions.  In

other words, the absorbing regions are always red shifted relative to the emitting regions.

For photons emitted in one region to escape the star, they have to pass through

“windows” in opacity, where the absorption probability is low.  To be able to construct a

synthetic light curve requires (1) access to high quality (“static”) opacity tables, and (2) a

radiation transport calculation including the effects of the Doppler shifts in the opacity

line and edge locations, due to the expansion.  The opacity tables are produced by

calculations with sophisticated opacity codes such as OPAL (Rogers et al., 1996, Rogers

and Iglesias 1998).

Experiments have been conducted on various lasers to measure the LTE opacities

of a variety of materials, [Springer, 1997] and have already been discussed in Secs. II and

III (see Figs. II.2a,b and Figs. III.2c,d) in the context of Cepheid Variables.  A different

class of experiment by Wark et al. (1994; 1995; 1997) and Patel et al., (2000) measured
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radiation line transport in an expanding plasma (Fig. IV.9). The experiment studied the

structure of a doublet in the aluminum spectrum, at a wavelength near 7.18 Å. The

emission occurs from an optically thick plasma with a significant velocity gradient, so

that emission in one line of the doublet is often absorbed and re-emitted, at another

location in the plasma, by the other line.  The resulting line structure is complex, but can

be reproduced by modeling only when this expansion effect on the radiation transport is

taken into account.  Hence, experiments are under development to test opacity

calculations, both static and in expansion, relevant to SN light curves.

All in all, this work has shown that laser experiments can be carried out for

parameters that are scalable to those of actual SNe, and that several fundamental

questions regarding the dynamics, material transport, radiation transport, and simulations

can be answered.  Relevant experiments on opacities and radiation flow are also very

suitable for the z-pinch facilities, such as Saturn and Z.



35

V. SUPERNOVA REMNANTS, BLAST WAVES, AND RADIATION

A. Introduction

The explosion of a star lasts only a few months. In contrast, the remnants from

these explosions, that is,  supernova remnants (SNRs), can be observed for centuries if

not millennia. SNRs are the observable structures that form through the interaction of the

ejecta from a stellar explosion with the surrounding (circumstellar) environment. In

addition, SNRs are widely believed to produce most of the Cosmic Rays that irradiate the

Earth. Laboratory experiments can help improve our understanding of some of the

mechanisms present in SNRs, and can help test the computational models we build to

interpret their behavior. In section V.B, we will provide some background regarding

SNRs, whereas in the rest of this chapter we summarize the existing experiments.

B. General Features of Supernova Remnants

Supernova Remnants are created from the kinetic energy of the exploding star,

typically about 1051 ergs. The stellar ejecta from the explosion undergo a homologous

expansion, with velocity, v, radial distance, r, and time, t, related by v = r/t. Expansion

cooling reduces the temperature of this material to a low value early on, so that nearly all

the energy of the ejecta is in kinetic energy. The first phase of SNR evolution is the free

expansion (or “young remnant”) phase, during which the leading edge of the expanding

ejecta drives a “forward shock” into circumstellar matter at  velocities of order 10,000

km/s. A “reverse shock”  propagates from the contact discontinuity (ie, the “interface”

where the SN ejecta meets the ambient medium) back into the ejecta; in the laboratory

frame this reverse shock at this phase still moves in the outward direction (Chevalier,
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1982a). Eventually, the mass of the accumulated circumstellar matter exceeds the mass of

the stellar ejecta. This is generally taken to mark the (gradual) transition to the “Sedov-

Taylor” phase. As this phase begins, the reverse shock runs in to the center of the SNR

and disappears, after which the SNR is believed to develop the characteristic structure of

a Sedov-Taylor blast wave [Whitham, 1974, p. 192]. During this phase, the SNR has a

single shock behind which the density and pressure decrease, and a radial size that

increases with time as R(t) ~ t0.4.  Eventually the SNR becomes an old remnant,

corresponding to  essentially a big bubble in the sky, with denser material around it.

Throughout the development of the SNR, the shocked matter radiates energy,

which escapes because the SNR is optically thin. The role of radiation varies depending

on the specific parameters of the particular event and on the phase that the remnant is in.

In paricular, conditions can be met (usually late in the explosion) where the radiation

causes a collapse of the shocked material into a thin shell (Blondin et al., 1998; Cioffi et

al., 1988), which can manifest a number of specific instabilities, e.g., Vishniac, 1983;

Ryu and Vishniac, 1987; Bertschinger,  1986;    Innes et al., 1987 ). The Cygnus Loop, a

15,000 year old remnant that is close enough to be 6 times the size of the Moon on the

night sky, is in this phase. A small part of this remnant is shown in Figure V.1. is the

structures evident in the Cygnus Loop are not an exception: the remnants almost

universally reveal complex 3D structures. The origin of these structures can be related to

initial 3D non-uniformities of circumstellar medium, to instabilities at the contact

discontinuity or the blast wave,  to 3D features “imprinted” on the ejecta during the SN

explosion itself, or to various combinations of these.
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In particular, the massive stars that are thought to be the progenitors for core-

collapse supernovae are usually formed in the regions where dense molecular clouds are

present. Therefore, there is a significant chance that the ejecta from the star will interact

with other matter, such as a molecular cloud. Figure V.2 shows such an interaction.

An example that is thought to be related to the Rayleigh-Taylor instability at the

contact discontinuity (Dickel et al., 1989; Gull, 1973; Shirkey, 1978) (Chevalier et al.,

1992), is shown on Fig. V.3 which shows one of the Chandra images of SNR E0102.2-

7219 (Blair et al., 2000; Gaetz et al., 2000; Hughes, Rakowski and Decourchelle, 2000;

Rasmussen et al., 2001). One can see modulations, spectroscopically identified to be at

the contact surface, that seem likely to have been produced by Rayleigh Taylor

instabilities. It is notable that the mode number of these modulations appears larger than

the mode number typically seen in simulations.

A memory of the initially unstable and structured explosion of the core-collapse

supernova may be responsible for an amazing array of knots, filaments, and flocculi in

the relatively young (300 years old) Cassiopeia A remnant shown on  Fig. V.4 (Anderson

and Rudnick, 1995; Keohane et al., 1996; Reed et al., 1995).  Again, there are “bubbles”

and “spikes” at various places around the outer boundary that appear Rayleigh-Taylor

like.

Many of these aspects of SN explosions can be simulated in the laboratory

experiments with high-intensity lasers or Z pinches. In the rest of this chapter we discuss

experiments of various degrees of complexity related to (1) the overall 1D dynamics, (2)

the interaction between high-speed flows and density clumps, and (3) the studies of

various aspects of radiative shocks.
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C. Simulating One-Dimensional Dynamics

In order to create an experimental setting that can be scaled to actual SNR

conditions,  one must produce a system in which flowing, cool ejecta encounter a reverse

shock, with the shocked material driving a forward shock through low-density matter.

The first experiments to accomplish this were those of Drake and coworkers

(Drake, Carroll et al., 1998; Drake, Carroll_III et al., 2000; Drake, Glendinning et al.,

1998; Drake, Smith et al., 2000), using the Nova laser facility (Campbell et al., 1986).

These experiments were in a planar geometry, intended to simulate a small segment of

the overall SNR expansion. The experiment began when an intense x-ray flux, produced

by laser heating of a gold cavity, irradiated a 200-µm-thick layer of plastic. The x-rays

ablated the plastic, launching a strong shock wave through it, at a pressure of 5 x 1013

dynes/cm2 (50 Mbars). This was the analog of the initial blast wave produced by the SN

explosion. This shock wave compressed, accelerated, and heated the plastic. When the

shock broke out of the plastic, the ejecta from its rear expanded, accelerated, cooled, and

decompressed across a 150 µm wide gap. In an actual SNR, spherical expansion provides

the decompression (McKee, 1974). Here the gap served an analogous function. The

ejecta then launched a forward shock into the ambient matter, in this case a foam whose

density was less than 1% of the density of the compressed plastic layer. The ejecta

stagnated against the (moving) contact surface with the foam, which launched a reverse

shock into the ejecta, just as occurs in an SNR.  In a young SNR and in this experiment,

respectively, Re = 6 x 108 and 7 x 106, Pe = 107 and 104. Radiative losses are unimportant

in both systems. Based on Euler scaling, the relation of the timescales is that 1 ns in the
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experiment corresponds to 1 year in the SNR. This system can be used for basic setup

and benchmarking of hydrodynamic simulations.

D. Interaction of shocks and clumps

The local structures observed in SNRs may result from instabilities, but much of it

probably is due to clumpiness in the circumstellar matter or in the ejecta. The clumpiness

may in turn affect the development of instabilities, as has been explored in some

simulations. (Jun et al., 1996; Kane et al., 1999). Since clumps introduce substantial

vorticity into the fluids that interact with them, experiments with clumps test the accuracy

of simulations somewhat differently than shock waves and interface instabilities do. To

date, no experiment has addressed the impact of multiple clumps, like those explored by

Jun et al., 1996, on SNR evolution. However, two experimental studies have made

relevant measurements with a single clump.

The issue of the destruction of a cloud by a shock has been addressed in

experiments begun at the Nova laser (Klein et al., 2000) and continued at the Omega

laser (Robey et al., 2002). Both sets of experiments involve the generation of a nearly

planar blast wave, within a shock tube, its propagation over a significant distance, and its

subsequent interaction with a dense sphere of material. The geometry of the Omega

experiment has already been shown in Figure II.4a. In this experiment, by the time when

the shock arrives at the location of the solid Cu sphere, it (the shock) has long since been

overtaken by the rarefaction from the front surface of the irradiated material, giving it a

blast-wave structure not unlike that present in a Sedov-Taylor phase SNR.
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When the shock wave traverses the sphere, the sphere compresses (gets

“crushed”). The interaction of the sphere with the post-shock flowing plasma produces

vortex rings,  visible in the last panel of Figure II.4 b. The vortex rings are subject to

azimuthal bending instabilities (“Widnall instability”) that then produce three-

dimensional structure.  These experiments should provide an excellent test of the ability

of astrophysical codes to simulate this type of shock-cloud interaction.  Three

dimensional (3D) simulations are required to reproduce these observations.

The experiment of Kang et al. created the density structures present in a Young

SNR and observed their interaction with a (rather large) spherical obstacle (Kang,

Nishihara et al., 2001; Kang et al., 2000; Kang, Nishimura et al., 2001). The setting was

similar similar to that realized in Drake et al., described at the beginning of Sec. V.C, but

now the low-density foam contained a 150 µm diameter ZrO2 sphere, to observe the

interaction of the shock and the ejecta with this sphere. The authors have clarified some

details of this experiment for us that may prove useful in reading their papers. The

structure of the C10H14O4 foam consists of a thin fiber network, with µm-scale cell sizes.

The total laser intensity, and not the intensity of each beam, was 2 x 1014 W/cm2. The

simulations in the papers are all for an initial CH layer thickness of 50 µm.  The

experiment produced images that show the forward shock, the layer of denser stagnated

ejecta, and some complex structures that developed through their interaction with the

sphere, attributed to vortex ring formation.

Beyond the global interaction of a shock wave with a molecular cloud, there are

also questions of the detailed interactions of the shock wave driven into the cloud with

the clumps that contain the vast majority of the cloud mass (Chevalier, 1999).
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Experiments using the Z machine at the Sandia National Laboratories (Poludnenko et al.,

2004) have been designed to examine such interactions, but have not yet been

accomplished.

E. Radiative effects in shocks

Radiative shocks exhibit a range of behavior that depends on the optical depth of

the downstream and upstream regions relative to the shock (Drake, 2004b). Present-day

laboratory experiments provide the possibility to address issues of the radiative cooling of

shocked material and the formation of ionized precursors by the radiation of the shocked

material.  As an example, we present Fig. V.5 based on experiments carried out by

Bouquet et al, 2004, at the LULI nanosecond laser facility. We first show the result of an

illustrative simulation with the ASTROLABE code (Fig. V.5a). We see the characteristic

structure of a strongly radiating shock, with the ion temperature initially very high ,

nearly ~ 1 keV (roughly corresponding to a standard Rankine-Hugoniot relation), then

decreasing because of the energy exchange with electrons. The electrons, in turn, are

cooled by atomic excitation and ionization processes, with a substantial part of this

energy radiated away from the shock region. Eventually, the temperature decreases to a

mere 20 eV, whereas the density reaches a value ~ 30 times higher than the initial

density.

In this experiment, the laser beams were focused onto a thin (2 µm) polyethylene

ablator which pushed a 25 µm layer of a polyethylene foam; the ablator and the foam

were separated by a 3 µm titanium x-ray  shield to prevent x rays formed at the ablation

front from preheating the foam “piston”. On the other side of the foam, a Xe gas at a
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density 1.3×10-3 g/cm3 was  situated. The whole design was aimed at making the target

low density, so that, at a given laser intensity, the shock velocity would be high, and one

would reach temperatures sufficient to make radiative effects important. The foam/gas

interface acted as a piston that moved at a velocity of ~70 km/s,  driving a strong shock

into the Xe gas.

A Mach-Zender interferometer was used to measure the electron density; an

interferogram is shown in Fig. V.5.b One sees the trajectory of the shock in Xe (dashed

curve), as well as the trajectory of the front end of the ionized precursor (solid curve)

produced by photoionization of the unshocked gas by the radiation from the shock region.

Shown in Fig. V.5c is a comparison of the experimental and calculated profiles of

electron density, 200 µm away from the foam surface (which serves as a pusher). The

position of the shock corresponds to the steep part of the curve; the left part of the curve

corresponds to an ionization precursor. The difference between measurements and

simulations is attributed to the 3D effects.

Experiments by Keiter et al, 2002, on the Omega laser also involve the initial

acceleration of a block of material to high velocity. Up to 10 laser beams struck the front

surface of this target, delivering several kJ of energy to an 800 µm diameter spot in a 1 ns

pulse. The laser irradiation shocked and accelerated a 60 µm thick plastic layer, which

crossed a 160 µm vacuum gap to impact a low-density foam, usually of density 0.01

g/cm3. This drove a shock wave through the foam at approximately 100 km/s.

The structure of the precursor was diagnosed using absorption spectroscopy.

Additional laser beams irradiated a thulium backlighter plate, permitting an imaging

crystal spectrometer to obtain absorption spectra. Absorption lines were detected from up
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to 6 different ionization states. The lines from higher ionization states appear at higher

temperatures. This allows one, with the help of the OPAL atomic code (Iglesias and

Rogers, 1996; Rogers et al., 1996), to determine the temperature profile in the precursor.

Figure V.6 shows an example of the results, and of an initial comparison to results from a

very simple radiation hydrodynamic model. One can anticipate that such experiments

could provide quality benchmark data for astrophysical modeling.

The observation of a radiatively collapsed shocked layer has also been

demonstrated in the experiment by Reighard et al., 2004, who used a 3 mm long, 0.6 mm

ID shock tube filled with xenon gas at a density of 6×10-3 g/cm3. The pusher (“piston”)

was a 50 µm thick beryllium layer. Simulations with the 1D Lagrangian code HYADES

(Larsen and Lane, 1994) have shown the formation of a collapsed layer in the case when

radiation losses were taken into account Fig. V.7a. Note the logarithmic vertical scale: the

density in the radiatively-collapsed  layer is twice as high as in the case with no radiation.

2D simulations allowed accounting for the effect of a finite radius of the shock tube

(Fig.V.7b). The 2D experimental radiographic image (Fig. V.7c) shows a remarkable

agreement with the simulations. Note that the velocity of the collapsed layer was quite

high, ~ 140 km/s.

Progress has also been made in the theory of radiative shocks, within the

approximation of high opacity and local thermodynamic equilibrium. In particular,

Michaut et al. (2003, 2004) have considered the role of radiation in the jump relations for

strong shocks in monotonic gases. These approximations, unfortunately, were never fully

satisfied in any of the aforementioned experiments.   Still, some interesting qualitative

features are worth mentioning: It turns out that the density compression ratio is not a
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monotonic function of the shock velocity. At a small velocity, when radiation, excitation,

and ionization are unimportant, the compresson ratio ρ2/ρ1 is 4 (for monatiomic gases).

At higher velocities, when the excitation and ionization “consume” a considerable

fraction of the energy of the shocked matter, but the radiation pressure is still small, the

compression ratio can be quite high, more than 10 (in other words, the equation of state

can be very “soft”). However, at yet higher velocity where the radiation pressure

becomes dominant in the shocked material, the compression ratio drops to 7

(corresponding to the adiabatic index of radiation γ=4/3).  All this is illustrated for Xe in

Fig.V.8a . These effects play a role even in light gases, like hydrogen (Fig. V.8b, c).

F. Blast Waves

Experimentally, both cylindrical (Edwards et al., 2001; Ditmire et al., 2000;

Shigemori et al, 2000) and spherical (Grun et al., 1991, Edens et al., 2004, Hansen, 2004)

blast waves have been studied. Effects observed include the dependence of the expansion

trajectory on the equation of state and on the role of radiation, in the spirit of Cohen et al.,

1998, and the effects of the Vishniac instability of thin decelerating shells. We discuss

here in some detail two recent experiments of this type.

The first was performed by Edens et al. (2004) on the Janus laser facility at

Livermore (Glaze et al.) and at the Z-Beamlet facility at Sandia (Rambo et al., 2002). A 1

ns laser pulse with energy ranging from 10 J to 1 kJ was focused onto the tip of a metal or

nylon pin situated in a target chamber filled with Xe or N2 at a pressure of between 5 and

10 Torr. The fast energy release at the pin tip created a blast wave, visualized by dark

field imaging.
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In the case of Xe, the blast wave trajectory initially followed the r~t0.25 law

corresponding to strong radiative losses from the material assembled by the blast wave

(Cohen et al., 1998). Later in the pulse, when the gas cooled down, a transition to the

Sedov-Taylor dependence, r~t0.4 occurred. In the case of nitrogen, the t0.4 dependence was

observed throughout the whole experiment (Fig. V.9 a,b).

Thin shell should manifest the overstability predicted by Vishniac. Indeed, in the

Xe plasma, small-scale structures were clearly visible, whereas in the case of nitrogen the

scale of the structures was larger (Fig. V.9c,d) – in agreement with the simple

observation that the Xe shell should be thinner because of  stronger cooling.

An interesting effect was observed by Hansen et al. (2004). They used the

technique just mentioned to launch a shock wave into Xe gas and then followed the

evolution of the system over a long time scale, up to ~ 30 µs. At t=150 ns, both the shock

and the gas ahead of the shock are visible (Fig.V.10a). Later in time the initial shock

weakens and is no longer visible. However, at t=4 µs, a second shock appears, at a

position well ahead of the possible position of the first shock (Fig. V.10b). This suggests

that the second shock is driven by the energy deposited in the precursor region, a

conclusion supported by the numerical simulations shown in Fig. V.10c.

G. Summary

From their slow beginnings more than a decade ago, recent years have seen a

number of experiments aimed at physical issues that matter in SNRs. These provide

substantial groundwork for further research. However, in a very real sense they are all

preliminary steps, and further work is needed. It is also worthwhile to mention that, in
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addition to hydrodynamic phenomena discussed in this chapter, there exists a broad range

of collisionless effects which, in particular, are thought to be responsible for the cosmic

rays generation in supernova remnants. In principle, HEDP facilities might contribute to

experiments on such phenomena (Drake, 2000), although experiment of this type remain

rare to date (Woolsey et al., 2001, Drake 2002, Courtois et al., 2004).
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VI.  PROTOSTELLAR JETS AND HIGH MACH-NUMBER FLOWS

Astrophysical jets present some of the most visually intriguing images

encountered in the galaxy and universe. [Reipurth, 2001; de Young, 1991]  These jets

cover an enormous range of spatial scale, from 1017 cm for jets from young stellar objects

(YSO), as shown in Fig. VI.1, to 1024 cm for jets associated with quasars or active

galactic nuclei (AGN) harboring massive black holes (see Fig. IX.1a).  The class of

stellar jets known as Herbig-Haro (HH) objects are thought to be collimated bipolar

outflows emerging from accretion disks during the star formation process.  Examples of

Herbig-Haro jets, HH 47 [Heathcote, 1996] and HH 111, [Hartigan, 2001] are shown in

Fig. VI.1. [Reipurth, 2001]  Typical velocities of the HH-jets are a few hundred km/s at

densities of njet = 10 – 100 cm-3.  In terms of density contrast, this corresponds to η =

njet/nambient = 0.01 - 10, depending on the density of the ambient medium, where njet and

nambient are the jet and ambient number density, respectively. [Blondin, 1990]  High Mach-

number, high density jets can be radiatively cooled, which greatly affects the dynamics

and morphology. [Blondin, 1990; Stone, 1994; Frank, 1998]

Models of jet formation generally fall into two broad categories.  One category

assumes that jets are formed as a consequence of matter falling into a compact central

object from a magnetized rotating accretion disk. [Pudritz, 1986; Livio, 1999; Shu, 1995;

Lovelace, 1993]  In the case of HH jets, the compact central object is the protostar or

young stellar object (YSO).  A large toroidal magnetic field formed by a differential

rotation near the central object then causes the ejection of the matter along the axis,

forming a configuration not dissimilar from a Z pinch. The return current flows over the

surface of a large magnetic blob (see discussion later in this section).
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A second class of models assumes that the accretion process onto a central object

results in a toroidal accretion disk, with density maximum along the equator and

minimum at the poles, which define the symmetry (and rotation) axis.  Spherically

symmetric, outflowing winds from the central object then interact with this toroidal

density profile, which leads to a funneling of the wind into bipolar jets following the

rotation axis. [Icke, 1992]  A variation on this is the formation of jets by convergence of

supersonic conical flows, in particular, in the presence of strong radiative cooling.

[Tenorio-Tagle, 1988]  Observational data are insufficient at this time to conclusively

discriminate between these two classes of models, and indeed both may be operating

simultaneously.

Jets are often categorized according to their jet internal Mach number [jet velocity

/ sound speed inside the jet, ie, vj/cs(jet)].  One effect of high Mach-number on jet

dynamics is to reduce the level of tip broadening due to Kelvin-Helmholtz instabilities at

the working surface. An additional effect is to reduce the amount of mixing and material

entrainment along the sides of the jet.  These effects are illustrated by the three

simulations show in Fig. VI.2a. [Norman, 1982]  The effect of radiative cooling is even

more dramatic. [Blondin, 1990; Stone, 1994; Xu, 2000]  Radiative cooling lowers the

pressure inside the jet, leading it to compress further, increasing the collimation, such as

shown by the simulations in Fig. VI.2b. [Blondin, 1990]  As the radiative cooling

increases, as quantified by the cooling parameter, χ = Lcool/Rjet, the jet density and

collimation increases.  Here, Lcool is the distance behind the working surface at which the

jet has radiatively cooled to some arbitrarily low value.  The effect of radiative cooling on

jet morphology is still strong, even when magnetic field effects are included in the jet
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evolution, as shown in Fig. VI.2c. [Frank, 1998]  A fundamental question is how these

jets remain so well collimated over propagation distances exceeding ~10 jet diameters or

more.

An emerging new experimental capability may prove useful in testing aspects of

these models in addressing the collimation question.  With the development of

sophisticated high power lasers and magnetic pinch facilities around the world, the ability

to conduct well controlled and well diagnosed laboratory experiments on high Mach

number hydrodynamic jets is now possible. [Stone, 2000]  Laboratory experiments allow

the effects of high Mach number, radiative cooling, and possibly magnetic fields on the

jet dynamics to be probed individually or in combinations.  The potential benefit of this

research to astrophysics is only starting to be recognized and pursued.

One example, done on the Omega laser at the University of Rochester, is a purely

hydrodynamic (non-radiative, non-magnetic), high Mach number jet, shown at two

different times in Fig. VI.3a. [Foster, 2002]  In the experiment, a set of 12 laser beams at

a total energy of ~6 kJ enters a cylindrical gold cavity (hohlraum) on one end through the

laser entrance hole (LEH), and converts to x-rays at or near the inner gold wall surface,

generating a burst of radiation of temperature Tr ≈ 200 eV, which lasts of order ~1 ns.  A

solid Al cylindrical plug of (200 µm diameter by 150 µm thick) is mounted on a hole on

the wall of the hohlraum opposite the LEH, with 100 µm of the Al protruding into the

hohlraum.  This Al cylinder is butted up against a ~1 mm long tube filled with a solid-

density plastic (CH) reservoir.  The radiation bath in the hohlraum ablatively launches

converging shocks into the Al cylindrical plug.  The magnitudes of the observed early-

time jet and shock velocities suggest that an initial, very high pressure region in the
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center of the Al cylinder, P > 100 Mbar (ie, 1014 dyne/cm2), is created.  The Al-CH

interface at the entrance to the CH reservoir is at ambient pressure, hence, the high

internal pressure in the Al launches a high Mach number jet of Al moving axially down

the CH tube.  This jet is imaged radiographically, by generating a timed burst of hard x-

rays (~5 keV) behind the target, and imaging the jet as a shadow (to the “backlighter” x-

rays).  This external source of backlighter x-rays is generated by focussing several of the

Omega beams onto an auxillary planar disk of material such as Ti, generating a bright

source of He-α x-rays at 4.7 keV.   The jet shown in Fig. VI.3a has moved about 3 jet

diameters, and a very prominent Kelvin-Helmholtz (KH) rollup is observed at the jet tip.

The bow shock in the plastic is also very evident in these images.  Simulations of the

experiment are shown in the top of Fig. VI.3a, and the experimental data are at the

bottom of the figure.  The internal Mach numbers in these jets are Mint = vjet/cs(jet) ≈ 3,

whereas the external Mach numbers are Mext = vjet/ cs(ambient CH) ≈ 5.  The density ratio

at the time of the images is η = ρjet/ρambient~0.3, due to the decompression of the Al, and

the shock compression of the plastic.  Once launched, these jets are purely hydrodynamic,

with effects due to radiation being insignificant other than generating the initial ablation

pressure source.  For hydrodynamic jets such as these, a rigorous scale transformation

can relate the laboratory experiments to the astrophysical setting.  [See the scaling

discussion in Chap. 4 on supernova hydrodynamics.]

A scaled up version of this experiment has now been done on the Z magnetic

pinch facility.  The jet was generated by the ablation pressure created in a Z-pinch driven

hohlraum, similar to the technique used by Foster et al, 2002, although with a much

longer pulse length and observed considerably later in time at 150 ns, as shown in Fig.
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VI.3b. [Sinars, 2004; Bennet, 2004].  This image used a bent spherical crystal,

monochromatic imaging diagnostic to cast the image onto x-ray film or an image plate.

Here, the high Mach-number hydrodynamic jet has propagated 5 - 10 jet diameters, and

still appears to be well collimated and reasonably laminar.  A different approach using

direct laser illumination to drive a shock that launches a jet of material through a

collimator (acting like a micro-gun barrel) has been developed on the Omega laser.  Also,

backlit imaging out to several hundreds of ns has been demonstrated.  An image from

such a jet, using point projection imaging, is shown in Fig. VI.3c. [Foster, 2004]  In this

case, the jet tip or working surface displays a very interesting appearance suggesting a

transition to turbulence.  Simulations done prior to these laser shots, such as that shown

in Fig. VI.3d, suggested indeed that the jet evolution might transition into turbulence.

[Taylor, 2003]

A very attractive alternate method to produce high Mach-number jets is to use a

magnetic pinch facility to generate the desired motion directly, by creating a properly

oriented j x B force (without first converting the wire implosion energy into black-body

radiation, as was the case in the experiments at Sandia).  This approach has been

developed at the Magpie Z-pinch at Imperial College, in London.  In this technique, a

fast-rising current, reaching 1 MA in 240 ns, is applied to a conical array of fine metallic

wires. [Lebedev, 2002] The resistive heating of the wires by the current rapidly converts

the outer surfaces of the wires to plasma, and through the J X B force, a fraction of this

plasma implodes onto the axis.  Due to the initial conical shape of the wires, the imploded

“precursor” plasma has a net axial velocity component, which turns thie plasma stagnated

on the axis into a jet.  If the wires are high Z, such as tungsten, the jet is radiatively

cooled, which increases its collimation and Mach number.  Three jets thus produced, with

wire arrays of Al (little radiative cooling), Fe (moderate radiative cooling), and W
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(strongly radiatively cooled) are shown in Fig. VI.4a. [Lebedev, 2002]  As the W

precursor plasma stagnates on axis, the jet radiatively cools and remains well collimated

as it emerges from the pinch regions.  This high Mach-number jet can then be directed to

impact an ambient medium, such as a CH plasma target. During this impact the jet tip

region (working surface) reheats, and starts to radiate in the soft x-ray again. An example

of such an impact from jet experiments done on the Magpie pinch facility is shown in the

left-hand image in Fig. VI.4b. [Lebedev, 2002]  Also shown in this image on the right

hand side is the case where a radiatively cooled W jet is deflected sideways by a scaled

“stellar wind”, caused by ablating a suitably placed CH foil. [Lebedev, 2004a]  Such jet

deflections have been observed in some HH jets.

An even newer development is the ability to create “magnetic tower” jets in the

laboratory, using a radial array of wires, instead of a cylindrical or conical array, as

shown in Fig. VI.4c. [Lebedev, 2004b]  Such magnetized, high Mach number jets

resemble aspects of models of magnetically formed protostellar jets, and thus add one

more experimental capability to the techniques available to study jet dynamics in the

laboratory.  Simulations show in detail the dynamics and conditions of these laboratory

high M-number magnetic tower jets, an example of which is shown in Fig. VI.4d.

[Ciardi, 2005]  The radial flow of current converges to the center, then runs axially down

the stem or stalk. The net magnetic forces cause the radial wire “sheet” to buldge

upwards.  Once the wires “break”, the magnetic bubble expands, launching a shock

upward into the ambient plasma.  If the wires were high-Z, such as W, the on axis,

upward moving jet would be radiatively cooled, and therefore remain well collimated.
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VII. HYDRODYNAMICS OF PHOTOEVAPORATED MOLECULAR CLOUDS

A. Introduction

Cold gaseous clouds illuminated by neighboring bright massive stars may

experience an intense ablation of material from their surfaces. The UV radiation from the

stars is absorbed by photoionization and photodissociation processes near the surface of

the cloud, causing a continuous ablation of the surface layers and generating a flow of

ionized gas directed away from the surface of the cloud. This process, first discussed by

Oort (1953), Spitzer (1954), and Oort and Spitzer (1955), is commonly called

“photoevaporation”. One of the best-known objects of this type is the Eagle Nebula.

Figure VII.1 shows the HST image of this object and Fig. VII.2 shows its orientation with

respect to the nearest young stars. Long pillars visible in the picture are sometimes called

“elephant trunks.” (Frieman, 1954) Other examples of photoevaporation flows can be

found, e.g., in Leung (1985). Detailed studies of the ionization front dynamics have been

carried out by Kahn (1954, 1958), who laid the groundwork for classifying various

possible regimes, as well as Dalgarno and McCray (1973) and Bertoldi (1989), who

produced a comprehensive analysis of the process with a detailed account of ionization

and recombination processes. Dense molecular clouds in the vicinity of bright young

stars are of broader interest because these clouds may serve as “cosmic nurseries,” where

star formation occurs (e.g., Shu et al, 1987; Elmegreen, 1998; Sugitani et al., 2002).

In recent years, much more detailed information about the physical conditions in

both the hot ionized flow and cold gaseous cloud has been obtained. The hot ionized part

was characterized by Hester et al. (1996) on the basis of Hubble Space Telescope

observations in Hα, [SII], and [OIII] lines.  Imaging of the cold interior of the cloud at
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millimeter-range wavelengths (emitted by the molecules of the cold gas) was carried out

by  Pound (1998). Levenson et al. (2000) have characterized the photodissociation zone,

as well as parameters of the ionized matter. These data make possible a much more

detailed analysis of the physics processes responsible for the formation of the visible

structures. In particular, hydrodynamic velocities inside the cold gas have been found by

Pound.

Below, we discuss hydrodynamic phenomena occurring during photoevaporation

of the gas clouds, with the main emphasis made on possible instabilities of the cloud

surface. We argue that a significant part of the problem can be correctly described in the

framework of ideal hydrodynamics and modeled in scaled experiments.

B.  Main physical processes

It has been realized many years ago (Spitzer, 1954) that complex hydrodynamic

motion and, eventually, the shape of the photoevaporated clouds is largely determined by

the ablation force arising from the intense photoevaporation. Molecular clouds are

typically quite cold: the balance of the heating of the cloud material by cosmic rays and

radiation cooling in the microwave range (Spitzer, 1978) establishes an initial (pre-shock)

temperature of only ~ 30 K. The ultraviolet radiation of the bright young stars is absorbed

in a very thin layer near the cloud surface by photoionization and photodissociation of the

hydrogen. The ionized gas thus formed begins to expand away from the cloud surface.

The pressure from the “rocket effect” then compresses the cloud . Typical ablation

pressures are orders of magnitude higher than the initial pressure of the cold cloud

interior. A strong shock is launched into the cloud, compressing and heating it. Once the
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shock wave has traversed the cloud, a rarefaction wave from its far surface travels back to

the front surface, after which the whole slab is accelerated. For the Eagle Nebula, the

timescale for these developments is ~ 105 years and is comparable to the timescale

inferred by Pound (1998) to develop the structures.

The properties of the material in the Eagle Nebula have been determined by

Hester et al. (1996), Pound (1998), and Levenson et al. (2000).  They are discussed by

Ryutov and Remington (2002) and are summarized in Table VII.1. In addition, Pound

determined that the velocity difference between the heads and the bases of the pillars is

∆v~106 cm/s, implying that the characteristic acceleration, g, of the cloud material is

g~(∆v)2/L~3⋅10-7 cm/s2.

One can readily show that the hydrodynamic description applies to these objects.

The mean free path λ of H2 molecules is determined by the molecular collisions with a

cross-section ~ 2⋅10-16 cm2. For the density as in Table VII.1, one has λ∼1011 cm, many

orders of magnitude less than any other characteristic dimension of the cloud. The

Reynolds number for the motions on the scale L is very large Re~107-108. The viscous

effects at the scales of interest are therefore unimportant. The particulate heat transport is

also negligible. We therefore conclude that the interior of the gas cloud can be adequately

described by the inviscid hydrodynamics.

In the ablative flow, which is almost totally ionized, the collisional mean free path

is determined by Coulomb collisions, which, at a temperature ~ 1 eV, have a cross-

section ~3⋅10-13 cm2. Therefore, despite a smaller density, the collisional mean-free path

λa in the ablation flow is very small:  λa∼3⋅109  cm for density of na~103 cm-3. Therefore,
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the particulate heat and momentum transport are both negligible here. One can check that

the radiation losses from the ionized low-density gas are also small.

Despite being quite cold, the molecular clouds are electrically conducting,

because of finite (albeit small) ionization. This ionization is non-thermal, it is produced

by cosmic rays for which the clouds are transparent. A substantial fraction of the

electrons are probably attached to dust grains (which are present in the cold clouds).

Estimates of the degree of ionization for the conditions typical for the Eagle Nebula yield

the value ~3⋅10-8 (Elmegreen, 1979). The magnetic Reynolds number turns out to be very

large (Ryutov, Remington, 2002).

Detailed estimates of the radiation losses from molecular clouds can be found in

Neufeld et al. 1995. Basically they show that the cooling time, defined as the ratio of the

thermal energy density to the power radiated from a unit volume, is very short, of order

of 100-1000 years. This means that the shocked material cools down very quickly, orders

of magnitude quicker than it takes for the shock to traverse the cloud (~ 105 years). This

brings up a paradox. Because of strong radiation cooling, the shocked material must

collapse to a high density  to maintain  pressure balance, nT=pabl
 , at a low temperature

(T~3⋅10-3 eV). This yields a density n~3⋅106cm-3, which directly contradicts  the observed

values.

Several solutions to this paradox have been proposed: the effect of ram pressure

from a small-scale turbulence;  the presence of a quasi-homogeneous magnetic field; the

presence of small-scale MHD turbulence; and the presence of force-free, random, static

magnetic field. The latest discussion of these models can be found in Ryutov et al., 2004,

2005, where references to earlier models can be found. The present authors assume that
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one or a combination of these effects restores a hydrodynamic picture of the shock-

compressed gas, with some effective adiabatic index.

There are multiple time-scales involved in this problem. As pointed out by Pound

(1998), there is a characteristic time-scale for hydrodynamic motion, τdyn~(∆ ′v )-1, where

∆ ′v  is the velocity shear inside the cloud. According to Pound,  τdyn~3⋅1012s ~ 105years.

The significance of this is that it establishes the maximum time that has passed since this

shear motion began: at times much greater than τdyn, the cloud would have become much

larger than we actually see it. In this sense, the time τdyn sets the upper limit for the time

when the photoevaporation began (when the nearby O-type stars have ”turned on”). It

was noted by Pound that the time τdyn is much shorter than the evolutionary time of the

typical O-type star (~ 107 years). Therefore, we are witnessing a very early stage of the

photoevaporation process. This is a very important circumstance, because it points at a

possibility that the stars are still in a transient stage of their formation, and their

luminosity may have varied significantly during the past 105 years. Such variations,

including non-monotonic variations, with the luminosity passing through a maximum, are

a common phenomenon in the evolution of very young stars (e.g., Iben and Talbott, 1966;

Cohen and Kuhi, 1979).

The time-scale for photoevaporation to remove a considerable amount of the

initial molecular hydrogen is much longer: ~3⋅106years. In other words, the loss of  cold

gas from the molecular cloud due to photoevaporation up to the present time is very

small.

C. Hydrodynamic models of the formation of the Elephant trunks.
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There exist several models that attempt to explain the origin of the pillars in the

Eagle Nebula. The earliest one was suggested by Spitzer (1954) and is based on the

observation that, after the shock breaks out at the back side of the cloud and the resulting

rarefaction wave reaches the front side, the cloud  as a unit begins to accelerate. This

drives the Rayleigh-Taylor instability at the ablation front (remember that nabl<<n). The

pillars are then identified with the familiar “spikes” of a heavy fluid penetrating through

the light fluid (Frieman, 1954).

We note that, if the intensity of the UV radiation grows with time, the interface

will be accelerated into the cloud even before the return of the  rarefaction wave to the

front surface. This would allow the early onset of the RT instability. Generally, the

possible effects of the temporal dependence of the ionizing radiation have not been

studied in any detail.

Another popular model relates the formation of the pillars to the assumed

presence of the pre-existing dense “clumps”, whose density is substantially higher than

the density of the surrounding cloud. The ablation pressure is unable to move these heavy

clumps, which stay, roughly speaking, at their initial places, and shadow the cloud

material  downstream. Then, whereas the rest of the cloud is moved over a significant

distance by the ablation pressure, the shadowed parts remain static, giving rise to the

pillar structure. This process has been studied numerically by Williams et al., 2001.

A third possible model is that the pillars are formed from the gas evaporated from

stand-alone dense clumps situated in front of the gaseous cloud. A part of the clump

material is pushed by the ablation pressure away from the radiation source, forming a

cometary-like structure [Bertoldi (1989); Bertoldi and McKee (1990), Lefloch and
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Lazareff (1994)], whence a name: “cometary model”. The long tail eventually reaches the

cloud and mixes with it, making the whole structure very similar to the one observed.

D. Laboratory experiments

Provided that our conclusion regarding the applicability of ordinary compressible

hydrodynamics for the description of the cloud interior is correct, one can simulate, in a

scaled fashion, any of these models. The experiments using x-ray irradiation from

hohlraums seem to be more relevant than experiments based on a direct laser irradiation

of the target, since experiments of the first type involve the direct photoevaporation of the

material by the x-rays. It also matters that the density of the material in the ablation flow

is at least an order of magnitude less than the density of the underlying material.

Experiments of the second type (“direct drive” experiments, Ch. II) are less relevant to

astrophysical photoevaporation  fronts, because they introduce complications not present

in the astrophysical systems.  Specifically, the absorption zone for the laser radiation is

spatially decoupled from the ablation zone, with heat being transported between these

two regions by electron heat conduction. Also, additional complications involving the

laser-plasma interactions are also possible (Kruer, 2000).

Because of the importance of Rayleigh Taylor instabilities at ablating surfaces to

inertial confinement fusion, there have been many experiments related to this subject.

The first paper on this subject was that by Remington et al. (1993). Weber et al. (1994)

carried out an exhaustive study of radiation transport and ablation front structure for

conditions close to those of these experiments. The density of the ablated material was

indeed small compared to the density of the initial foil. Absorption in these experiments
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occurs in a relatively narrow layer,  as is the case in the Eagle Nebula. Ablative

stabilization (see below) plays a role only for short wavelengths, λ< 10 µm, whereas the

range of wavelengths studied was up to 150 µm. It is interesting to note that the structure

of well-developed RT perturbations observed in Remington et al., 1993 (Fig. VII.3) is

very similar to the “elephant trunks” observed in the Eagle Nebula. Although the

experiment was not optimized to have scaled parameters  relevant to the Eagle Nebula, it

certainly has produced relevant results, somewhat by serendipity. The comparison of the

parameters of the Eagle Nebula with those of this laboratory experiment is presented in

Table VII.1.

Note that the so called “ablative stabilization” was insignificant in both the

laboratory experiment and its astrophysical counterpart.  The underlying qualitative

explanation of this stabilization mechanism is that the Rayleigh-Taylor perturbation is

localized in a layer of thickness ~λ/2π near the surface, so that if the ablation front

“consumes” or burns off a layer of thickness ~λ/2π  of the fluid within a time interval

shorter than the instability e-folding time, a considerable reduction in the growth rate,

compared to γRT = (2πg/λ)1/2, occurs. In other words, ablative stabilization becomes

significant when va>(ρa /ρ)(gλ/2π)1/2, where va is the velocity of the ablative flow and we

ignore a numerical factor of order unity; see surveys by Lindl, 1995 and Takabe, 1999,

for more detail and further references. Using the numbers of Table VII.1, one finds that,

indeed, the ablative stabilization is unimportant for the wavelengths of interest.

For completeness, we mention that ablation front RT instability has also been

studied in extensive detail in direct drive (Azechi et al., 1997; Knauer et al., 2000).

E. Issues for experiments and theory
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There exist several additional effects that have to be properly factored into the

theory, numerical simulations, and the experiment, in order to produce a more complete

picture of the real photoevaporation front phenomenon.

The first effect is related to the absorption of the incident radiation in the ablation

flow. The absorption is caused from the small fraction of electrons and ions that

recombine, producing neutral hydrogen atoms which absorb the ionizing radiation.

Depending on the specifics of the geometry, this effect may be quite substantial.  Kahn

(1958) argued qualitatively that absorption of the incoming radiation by hydrogen atoms

formed by recombination in the ablation outflow, can have a stabilizing effect, because of

the stronger absorption near the dimples of the surface relief compared to the bumps.

Axford (1964) presented a quantitative study that showed that this stabilization

mechanism is most effective for perturbations larger than the recombination length.

Sysoev (1997) provided more complete analysis. Williams (2002) confirmed it and

included the effects of radiation tilt. These papers dealt with the situation of a non-

accelerated ablation front. In a more recent study by Mizuta et al (2005), both effects of

acceleration and radiation absorption were included. It turned out that the linear RT

instability, for the characteristic parameters of the Eagle Nebula, is stabilized by the

absorption effect. On the other hand, nonlinear perturbations may continue to grow.

These results are illustrated by Fig.VII.4.

In the aforementioned experiment by Remington et al. (1993), the parameters of

the ablation flow were such that the absorption of the incident radiation was insignificant.

On the other hand, by a proper choice of dopants, it may be possible to reach conditions

where the absorption of radiation in the outflow would be similar to that in the Eagle
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Nebula outflow. This would then open a possibility to experimentally assess the effect of

absorption on both the linear and the nonlinear stage.

The second additional effect is produced by noting that the incident ionizing

radiation may be tilted with respect to the surface of the ablation front. The perturbation

of the ablation pressure will then be different on the two slopes of a small-amplitude

sinusoidal surface wave, leading to the excitation of this wave as a traveling wave. This

effect was studied for non-accelerated clouds by Vandervoort (1962) and, more recently,

by Williams (2002). Ryutov et al. (2003) have included both the effect of acceleration

and the tilt, and predicted that, in the nonlinear regime, an effect similar to the breaking

of the waves on the ocean surface may occur. This phenomenon can be experimentally

studied in an asymmetrically-radiated hohlraum, where there will be an asymmetry in the

radiation flux (Ryutov, Remington, 2002).

The third effect is related to that situation where the radiation from a distant star

in the location of the cloud has a narrow angular distribution. J. Kane has found that this

may introduce new features to the development of small-scale perturbations of the

ionization front (Kane et al, 2005). This effect can also be studied with the use of a

hohlraum technique,  by placing the target outside the hohlraum, far enough from the

hole in the hohlraum wall, so that the radiation would become strongly collimated.
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VIII.  PLANETARY INTERIORS AND EQUATIONS OF STATE

The interior structure of the giant planets of our solar system (Jupiter, Saturn,

Uranus, and Neptune) is determined by the compressibility of their constituent matter

under the very high pressures due to the inwardly directed force of gravity.  [Guillot,

1999]   In laboratory terms, this compressibility is determined by the equation of state

(EOS) of the constituent matter along an isentrope [Saumon 2004].  The EOS and other

properties of matter at the extreme pressures and densities found in the interiors of the

giant planets, however, are uncertain.  The pressures of interest along an isentrope range

from 1-8 Mbar in Uranus and Neptune, [Hubbard, 1997] 1-40 Mbar in Saturn, to 1-70

Mbar in Jupiter, [Guillot 1999] as shown for Jupiter in Fig. VIII.1a.

Characteristic isentropes for the giant planets indicate that the plasma in their

interiors is both strongly coupled, with Γ = (Ze)2/aT > 1, where Z, e, a, and T correspond

to ionization state, electron charge, average atomic spacing, and temperature (in units of

energy), and degenerate, meaning θ = T /εF < 1, where εF is the Fermi energy. [Van Horn,

1991]  This is shown for Jupiter, as well as for a brown dwarf and a low-mass star, in the

phase diagram of hydrogen in Fig. VIII.1b. [Saumon, 2000]  The compressibility of

hydrogen along a high pressure isentrope, and the predicted phase separation in a He-H

mixture when hydrogen transitions to a metallic state are of central interest, both for the

giant planets of our solar system, and for models of the extrasolar planets. [Fortney,

2004]  Also shown in the pressure-temperature plot of hydrogen in Fig. VIII.1b are the

results of single-shock and doubly-shocked experiments, compared to curves of constant

Γ and degeneracy θ, showing that strongly coupled, Fermi degenerate conditions are

within reach experimentally.  Given the large theoretical uncertainties, experimental data
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on the high pressure EOS, phase, and conductivity of hydrogen is needed, to guide the

testing and refining of interior models of Jupiter and Saturn.

The giant ice planets Uranus and Neptune also have significant uncertainties in

our understanding of their interior structures.  They are thought to exist of a gaseous

atmosphere, a rocky core, and a thick intermediate ocean of hot H2O, NH3, and CH4 in a

dense liquid phase customarily referred to as “ice”. [Hubbard, 1997; Cavazzoni, 1999]

Pressures and temperatures in the ice layer range from 20 – 600 GPa and 2000 – 7000 K,

resp., as shown in Fig. VIII.2a.  Many of the observable quantities of the giant ice

planets, such as gravitational moments, atmospheric composition, and magnetic field, are

thought to be determined by the properties and conditions within the ice layer.  There are

very large uncertainties in our understanding of how the magnetic fields of Neptune and

Uranus are formed.  In particular, experimental data is needed on the conductivity of

water, methane, and ammonia at P > 100 GPa, before models of the origin of their

magnetic fields can be firmed up.

The phase diagram of high pressure water, shown in Fig. VIII.2b, has very large

uncertainties.  Starting at low temperature, water will be in the solid ice state, and

depending on pressure, this can have several different phases. [Cavazzoni, 1999]  At high

pressure, P > 100 GPa, as temperature is increased to T > ~2000 K, it is thought that a

transition occurs to a solid, superionic state, where the oxygen atoms maintain a

crystalline body-centered cubic (bcc) lattice structure, but the protons can readily diffuse.

This makes this solid-state material an ionic conductor but electronic insulator.  As

temperature is further increased to T > ~3500 K, the oxygen sublattice also melts, and a

two-component ionic liquid (molten salt) is formed, which again is an ionic conductor but
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electronic insulator.  Finally, above 7000 – 7500 K, water is thought to become a metal,

that is, the electronic band gap closes, Egap/kT < 1.  Experimental data on the high

pressure EOS, phase, and conductivity of water is needed, to allow theoretical progress to

be made on interior models of Neptune and Uranus.  Fortunately, experimental progress

has been made on the high pressure properties of both hydrogen and water.

A summary of recent experimental measurements of the shock-driven EOS of D2

at ~1 Mbar pressures is given in Fig. VIII.3a. [Knudson, 2003]  Achieving ~Mbar

pressures in these cryogenic hydrogen experiments is very difficult.  The results from

four different techniques are shown in Fig. VIII.3a, corresponding to experiments done

on a gas gun [Holmes, 1995], the Sandia Z facility [Knudson, 2003], a spherically

convergent, HE-driven experiment [Be’lov, 2002; Boriskov, 2003], and the Nova laser

[Collins, 1998].  The gas gun, Z, and high explosive (HE) results all more or less agree

with each other.  The gas gun and Z experiments both used the impedance matching

technique, that measures the EOS of D2 relative to an assumed known EOS of Al.  The

Nova experiment was the only measurement in this set of four experiments that was

absolute, that is, the compressibility of D2 was measured directly, as opposed to being

inferred by comparison with the EOS of a reference material.  This experiment showed

enhanced compressibility, not evident in the other experiments.  The reason for the

difference between the Nova laser measurements, and all the rest of the measurements is

still under debate.  A new set of relative measurements done on the Omega laser favors

an EOS of D2 that is less compressible than the Nova data, [Boehly, 2004] however, the

situation is still far from settled. [Nellis, 2002; Mostovych, 2001]  To conclude this

ongoing debate, it seems likely that a new set of absolute measurements will be
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necessary.  There are a number of models of the EOS of high pressure hydrogen being

compared with these data, as shown in Fig. VIII.3a.  The tabular SESAME EOS, and the

ab initio models generally are in agreement with the stiffer EOS data from Z.  The linear

mixing models and the Saumon-Chabrier-Van Horn (SCVH) model generally favor a

softer EOS, that is, higher compressibility.

The impact on the predicted structure of the interior of Jupiter for the different

EOS models is shown in Fig. VIII.3b. [Saumon, 2004]  This figure shows the mass of the

core of Jupiter versus the mass of high-Z elements mixed throughout the planet, predicted

using the five different models of high-pressure EOS of D2.  Models that did not

reproduce the global gravitational moments of Jupiter, as determined by satellite fly-by

missions, were eliminated from these comparisons.  The results in Fig. VIII.3b show that

the interior structure of Jupiter is surprisingly sensitive to the details of the high pressure

EOS of hydrogen.  Hence, there is considerable impact and scientific interest in

concluding the experimental debate on the EOS of D2.

There are new experimental results, measuring the EOS and conductivity of high

pressure water, [Celliers, 2004; Koenig, 2004] relevant to the interior of Neptune.  In

these measurements, the principle Hugoniot of water was measured, by the impedance

matching technique at an Al-H2O interface, as shown in Fig. VIII.4a. [Celliers, 2004]

Also, the reflectivity of high pressure water at the shock front was measured, as shown in

Fig. VIII.4b, from which the electronic conductivity, σe, was inferred, with the aid of a

Drude model.  This model, thus calibrated, was used to estimate σe along the isentrope of

Neptune, as shown in Fig. VIII.4c.  This, compared with measurements of the total DC

conductivity of water, σDC, done with singly shocked [Nellis, 1988] and reverberating
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shocks on a gas gun, [Chau, 2001] suggest that the electronic conductivity contributes

roughly equally with ionic conductivity at 5000 K along the isentrope of Neptune, and

will begin to dominate at higher temperatures.  This will have significant implications for

future models of the interior of Nepture, and in particular, on models of the formation of

its magnetic field.

Also, relevant to the interior of the earth, new dynamic measurements address the

EOS and high pressure melt transition in Fe, [Koenig, 2004; Koenig, 2000; Benuzzi-

Mounaix, 2002; Nguyen, 2004] relevant to the inner-core, outer-core boundary region of

the interior of earth.  A key issue here is resolving the discrepancy between the high-

pressure melt temperature detected dynamically in shock experiments and static

measurements in a diamond anvil cell (DAC).  Additional experiments and research will

likely be required to conclude this debade.
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IX.  COMPACT OBJECT ACCRETION DISKS AND PHOTOIONIZED

PLASMAS

One of the most intriguing objects in the universe is an accreting compact object,

such as a neutron star or black hole. At the extreme is an accretion disk around a massive

black hole (108-109 Msun) at the center of a galaxy such as the active galactic nucleus

(AGN) object NGC 4261, shown in Fig. IX.1a. [Ferrarese, 1996]  The accreting, massive

black hole also generates bipolar intergalactic jets, which taken together form a quasar.

[Pinar, 2001].  Observational evidence from HST images suggests a massive black hole

in the active galaxy NGC 4261, a giant elliptical galaxy at a distance of 30 Mpc.

[Ferrarese, 1996]  From an analysis of optical images obtained using HST/WFPC2,

similar to that shown in Fig. IX.1a, it is deduced that the ionized gas near the center is in

circular motion, consistent with a central mass of ~4.9 x 108 M8 inside of a spatial extent

of 15 pc. The corresponding mass-to-light ratio is (M/L) ~ 2 x 103 M8/L8, supporting the

interpretation of a central massive black hole.  There appears to be an intimate connection

between the dust disk and the central engine, which drives the two bipolar radiojets of 105

light year extent that eminate normally from the disk. [Pinar, 2001] The inner dust disk is

thought to be supplying fuel to the central engine, and an outer dust disk is thought to be

feeding fuel to the inner accretion disk that surrounds the massive black hole.

Another much closer example of an accreting compact object is Cyg X-3, an

accreting x-ray binary system. An example spectrum from this accreting binary x-ray

source Cyg X-3 is shown in Fig. IX.1b. [Liedahl, 1996]  These spectra result from the

final plunge of matter from the accretion disk into the compact object, and have been

shown to result from a photoionized plasma.  Schematically this is illustrated in Fig.
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IX.1c.  In such a plasma, radiative excitation, absorption, and emission processes

dominate, and collisional processes are greatly reduced or negligible.  The emission-line

spectrum of the X-ray binary Cygnus X-3 is consistent with recombination-dominated

line formation. From this it is inferred that the source of energy “pumping” the lines is

the hard X-ray continuum.  The simplest interpretation of Cyg X-3 assumes that the x-ray

emission is from plasma in photoionization equilibrium.

To check or calibrate the models used to interpret these spectra, experimental data

of photoionzied plasmas in relevant regimes are required.  It was recognized recently that

similar conditions of photoionized plasmas could be created in the laboratory using the

intense burst of x-rays coming from the z-pinch at the SNLA Z-facility. [Heeter, 2001]

An experiment was developed to measure the photoionized plasma x-ray spectra under

approximately scaled conditions.  The figure of merit, the ionization parameter ξ = L/ner2,

where L, ne, and r are the ionizing (x-ray) luminosity, electron density, and distance from

the central source of ionizing radiation, resp., needs to be large, ξ ≥ 100, to be relevant to

astrophysical photoionized plasmas.  This implies radiation dominance in the excitation

and de-excitation processes.

The experiments were performed at the Sandia National Laboratory Z facility.

The radiation from the pinch was generated by coupling a 20 MA, 100 ns rise time

current pulse into a 2 cm diameter, 1 cm length, cylindrical wire array, creating a 8 ns

FWHM, 120 TW, Tr = 165 eV near-blackbody radiation source.  The sample charge state

distribution, the absolute radiative flux, and the sample densities were measured

independently.  A typical spectrum from an Fe sample, located a distance of 1.5 - 1.6 cm

from the pinch, is shown in Fig. IX.2a. [Foord, 2004]  In this experiment, ξ  reaches a
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value near 25 erg.cm/s at the peak of the radiation pulse, compared to the desired values

of 102-103 to resemble those of an accreting black hole.

A number of photoionized plasma models have now been compared with this

laboratory experiment, as shown in Figs. IX.2b and IX.2c.  In Fig. IX.2b, the results from

the model Cloudy is shown as a function of temperature, from 30 – 210 eV. [Foord,

2004]  In these model calculations of the laboratory plasma, it was assumed that Te = Ti.

The data are shown by the circular plotting symbols with error bars.  There is significant

temperature dependence in the predicted <Z> from 30-70 eV, above which additional

increases in temperature have little effect.  A simulation from the model FLYCHK is also

shown.  Additional comparisons of the predicted versus experimentally observed

ionization distribution for an iron plasma are shown in Fig. IX.2c. [Rose, 2004]  A

radiation temperature of Tr = 165 eV, electron temperature of Te = 150 eV and electron

number density of ne = 2 x 1019 cm-3 [Foord et al 2004] were assumed for the calculations

with the average-atom model NIMP.  Calculations are shown without and with inclusion

of the radiation field.  The observed ionization state would be underpredicted without the

inclusion of the radiation field, which is a central feature of astrophysical photoionized

plasmas.  Also included in the comparison are predictions from the more detailed model

GALAXY presented for the same conditions.

These data are of sufficient quality to effectively test and calibrate these

photoionized plasma models under relevant conditions.  Good agreement with

experiment is found only for the calculations that include the radiation field, but

collisional effects are not completely negligible.  The average-atom model is observed to

be quite effective at calculating these photoionized plasma x-ray spectra, which is an
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important conclusion, because of its wide use in modeling laboratory plasmas.
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X.  OUTLOOK FOR THE FUTURE

There are a multitude of new facilities on the horizon, that will enhance the ability

to pursue HED laboratory astrophysics.  These include high energy, long pulse lasers and

magnetic pinch facilities; high energy, short pulse lasers; and ultrashort pulse lasers.  In

the category of high energy HED facilities, the NIF (at LLNL) [Hogan, 2001; Miller,

2004; Moses, 2004] and LMJ (at CEA in Bordeaux, France) [Cavaillier, 2004; Andre,

1999] lasers will each deliver about ~2 MJ of laser energy, once they are complete.  The

LIL laser in Bordeaux, France, will be an 8-beam demonstration facility for LMJ, and

should achieve at full performance over 60 kJ of 3ω light. [Di-Nicola, 2004]  The ZR

magnetic pinch facility (at SNLA) will deliver a fast rise-time pulse of 30 MA current to

implode a cylindrical wire array, generating over ~2 MJ of x-rays. (Matzen, 2005)  The

Omega-EP facility [McCrory, 2003] will include two 2.5 kJ PW lasers, which can be

focused into either a stand-alone chamber, or into the Omega 60-beam chamber,

synchronized with the 30 kJ, 60-beam Omega laser, enabling new regimes of high

intensity laser-matter interaction studies. [Sangster, 2004]  The LULI laser facility is

being upgraded to have 4 beams: one 1 kJ, 1ω long pulse beam, one PW beam, and two

100 J probe beams. [Koenig, 2004]  The Gekko-12 laser facility at Osaka Univ. will be

upgraded, so that the 12-beam, 10 kJ long pulse Gekko will be augmented by a high

energy (up to ~10 kJ) petawatt beam for fast ignition studies. [Miyanaga, 2004]  The

Helen laser at AWE in the UK will be upgraded into Orion, which will be ten 1/2 kJ 2ω

beams, plus two 1/2 kJ petawatt lasers.  And the Vulcan petawatt is just starting routine

operation at ~500 J in ~1/2 ps. [Danson, 2004]  And there are a number of ultrashort

pulse (< ~1 ps), moderate-energy lasers operating or under development, such as the
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Texas Petawatt at Univ. of Texas-Austin, [Ditmire, 2004] and the Leopard laser at the

Univ. of Nevada-Reno.  The Zebra magnetic pinch machine, also at UNR, is being

developed, and will be combined with the Leopard laser, to form the Nevada Terawatt

Facility. [Erlandson, 2004]  All of these facilities will eventually be equipped with an

array of time-resolved diagnostics, for carrying out unique HED experiments.

The greater number of HED experimental facilities will allow the new area of

HED laboratory astrophysics to be developed at a much faster pace.  With the advent of

the next generation of very large facilities (NIF, LMJ, ZR), key new regimes will be

accessible, where current facilities have fallen short.  Based on the discussions given in

this article, we suggest the following as potentialfruitful areas for next generation HED

laboratory astrophysics studies on the large facilities.

In the area of SN explosion hydrodynamics, a scaled, multilayer, spherically

divergent experiment could be carried out that should transition well into the turbulent

regime.  Attempts at a scaled down version of such an experiment on the Omega laser

came up short in the amount of energy available to drive the package.  The desired

hydrodynamic instabilities were initiated, but never entered the deep nonlinear regime.

[Drake, 2002; Robey, 2001]  With the larger energies available on NIF and LMJ, this

multilayer, divergent geometry experiment could serve as a conclusive test whether the

“standard (spherical shock) model” of core collapse SNe is correct, at least from a

hydrodynamic perspective.

It should become possible to test high Mach-number jet propagation and

collimation over longer distances through an ambient medium, with and without the

effects of radiative cooling.  Experiments such as this should help answer whether
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astrophysical jets can remain collimated from a purely hydrodynamic or radiative-

hydrodynamic perspective, or whether additionally, magnetic fields are required.

With the more intense bursts of x-rays possible on the next generation larger

facilities (NIF, LMJ, ZR), it should be possible to conduct photoionized plasma

experiments in the correct regime of ionization parameter, ξ ~ L/ner2, allowing black hole

accretion disk models to be tested under properly scaled conditions.

In the area of opacities, the larger facilities open up the possibility for

measurements of opacity under conditions relevant to the core of solar-sized stars (~1

keV, 100 g/cm3).  Also, measurements of expansion opacities, that is, opacities in a

homologously expanding ball of plasma, should be possible.  These are relevant to SN

light curve calculations.

Another new regime will be the ability to study matter under planetary interior

conditions, with quasi-isentropic drives that reach 1-10 Mbar conditions, or higher, in a

well controlled, reproducible manner.  This should allow EOS determinations, and

measurements of phase, conductivity, and maybe even solubility of mixtures of H, He,

and more complex “ices” under conditions relevant to planetary interiors.  It should be

possible to experimentally show, unambiguously, whether or not the plasma phase

transition (“PPT”) in hydrogen exists.  It may even be possible to study properties of

matter under even more extreme conditions relevant to the envelopes of white dwarf

stars.  White dwarfs are interesting in their own right, but also serve as

“cosmochronometer”, [Fontaine, 2001] and when accreting from a binary partner, form

the initial conditions for a Type-I SN.
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Extended duration radiation sources will be available, which will be ideal for

experimental studies of models and the dynamics of radiatively driven molecular clouds,

such as the Eagle Nebula. [Mizuta, 2005; Pound, 2005]  Unique effects are predicted due

to the directionality of the radiation, due to stars acting effectively as “point sources”, and

due to the photoevaporated plasma not necessarily being optically thin. [Mizuta, 2005;

Kane, 2005]

Once ignition is achieved, the intense burst of D-T neutrons, generating a flux of

1032-1033 neutrons/(cm2.s), may allow excited state reactions to occur, which are relevant

to the nucleosynthesis of the heavy elements, ie, those nuclei more massive than Fe.

[Libby, 2003]  It may also be possible to study thermonuclear reactions in highly

screened, dense plasmas, relevant to reactions in dwarf stars.  Finally, if high gain (G >

100) implosions can be produced, [Suter, 2004] it may be possible to examine some of

the physics issues surrounding the proposed deflagration-to-detonation transition, and the

role of hydrodynamic mixing, relevant to Type-I supernovae.

Finally, with the ultrahigh intensity, short pulse lasers, it may be possible to study matter

under ultra-extreme conditions relevant to the vicinity and atmospheres of accreting

neutron stars.  Extreme large magnetic fields are needed in a radiation-dominated

plasma.  Aspects of these conditions may be within reach with the combination of

multiple petawatt lasers, plus the NIF, LMJ, or ZR driver.

 

This work was performed under the auspices of the U.S. Department of Energy by University 

of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 
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FIGURE CAPTIONS:

Figure II.1a. The Omega laser facility.  Note a “switchyard” at front: it is used to

distribute 60 laser beams as evenly as possible around the vacuum chamber

where the target is situated. Such an arrangement is dictated by the principal

objective of the Omega facility, which is the studies of a “direct drive” fusion

(see the text).

Figure II.1b. Schematic of the Z facility at Sandia National Laboratories (Albuquerque).

The outermost part is formed by Marx generators. They are connected to 36

water-insulated transmission lines which, in turn, feed magnetically insulated

vacuum transmission lines converging at the diode. The diode is situated

inside the central tank. This facility is now being refurbished, to increase the

current from 20 to 30 MA (Matzen, 2005).

Figure II.2a. Experiment using a z-pinch driven hohlraum on the Saturn facility. The z-

pinch implodes on axis of a primary hohlraum which is used as a source of a

thermal x-ray radiation for probing an iron plasma and measuring its opacity

(Springer et al, 1997) under conditions interesting for the physics of

Cepheids.

Figure II.2c. Typical experiment using direct laser irradiation. In this case, the experiment

(H. Robey et al, 2002) is aimed at the study of interaction of a strong shock

with a density clump, a typical astrophysical problem (R.I. Klein, 2003).

Several of the Omega beams are used to generate a source of x-rays (a

backlighter, see the text) situated at the opposite side of the experimental
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assembly. Using a gated x-ray pinhole camera (“x-ray framing camera”),

radiographic images are obtained as a function of time, as shown in (d).

Fig. III.1a:  Hertzsprung-Russell diagram of magnitude versus spectral type for stars

along the main sequence, and variable stars, including those along the

Cepheid instability strip.  Also shown along the horizontal axis are

temperatures (K) in parentheses, corresponding to the spectral type.

Reproduced from [Bohm-Vitense, 1989], Fig. 16.3.

Fig. III.1b:  Plots of the stellar pulsation period – magnitude (or luminosity) linear

relation, showing that the longer the period of oscillation, the brighter the star

(lower magnitude).  The three curves result from different analyses of this

correlation.  These curves form the basis for the use of Cepheid variables as

galactic yardsticks, to infer distances. Reproduced from [Bohm-Vitense,

1989], Fig. 16.7.

Fig. III.1c:  The phase relations for the variable star δ Cephei, showing the correlations

between periodic pulsations of visual magnitude (∆m), i.e., brightness,

effective temperature  (T), spectral type (Sp), radial velocity (vel.), and radius

(R).  Reproduced from [Bohm-Vitense, 1989], Fig. 16.4.

Fig. III.2a:  Opacicty versus temperature for a 15-element mixture of solar composition,

along a path of constant ρ/T3.  OPAL calculations are shown for a Z = 0 zero

metallicity star (no elements heavier than He), and for a Z = 0.02 solar

metallicity star (2% mass fraction in elements heavier than He).  The results
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from a previously used set of Los Alamos opaicities for Z = 0.02 are also

shown.  Reproduced from [Rogers, 1994], Fig. 2.

Fig. III.2b:  Diagram of the ratio of the periods of the first two harmonics of a beat

Cepheid variable star.  The circles represent the observations.  The upper

(dashed) curves correspond to the simulated result using older opacities,

which ignore the full fine structure of the metals.  The lower (solid) cuves

correspond to simulations with OPAL-DTA, including the full fine structure,

in particular, for Fe.   Reproduced from [Rogers, 1994], Fig. 4.

Fig. III.2c:  Plot showing the measured versus calculated transmission through a thin Fe

sample heated to conditions of ~20 eV and ~10 mg/cm3.  Two OPAL opacity

simulations are shown, one using DCA with hydrogenic oscillator strengths,

which ignores term splitting (top curve), and the other using full DTA with

intermediate coupling, which causes term splitting.  The latter, more

complete opacity calculation more closely reproduces the experimental

results.  The experiments were carried out on the Nova laser.  Reproduced

from [Rogers, 1994], Fig. 3.

Fig. III.2d:  Comparison of theoretical transmission spectra at the measured conditions of

20 eV, and 10-4 g/cm3.  The calculations correspond to the STA opacity

model (upper curve), OPAL DTA model (intermediate curve, showing the

line fine structure), and OPAL UTA (lower curve).  The intermediate curve

rather closely reproduces the experimental results (not shown).  Including the

transition fine structure changes the predicted average opacities significantly.

Reproduced from [Springer, 1997], Fig. 9.
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Figure IV.1 Variation of the density distribution after the explosion of SN 1987A (after

T. Shigeyama and T. Nomoto, 1990). Time t=0 corresponds to the instant just

before the explosion. Mr is a Lagrangian mass within a certain radius. Steep

density gradients in the progenitor star, situated at Mr/Msun≈2.5 and

Mr/Msun≈4 correspond to the Oxygen-Helium and Helium-Hydrogen

transition zones, respectively. After the transit of the shock wave through

these zones, the pressure gradient changes sign and the Rayleigh-taylor

instability develops, leading to a 3D mix process which is thought to be

important in the explanation of the light curve.  The ertical line separates the

outer zone where conditions for the RT instability are not fulfilled.

Figure IV.2. Light curve for SN1987A (reproduced with permission from Arnett, 1996).

The ‘+’ symbols are the observed light curve, and the thin solid line is an

analytic model described in Arnett, 1996.  The different dates indicated

show when x-rays were first detected on day 139 by the Ginga/Mir

experiment, when γ-rays from 56Co were detected by the Solar Maximum

Mission (SMM) at day 178, and when subsequent detections of γ -rays

occurred by several balloon experiments (CIT, LM, FG).  The inset shows a

calculation of the evolution of temperature versus time as the shock breaks

out the surface of the star.

Figure IV.3 Density distribution (logρ [gcm-1]) 300 s after core bounce in the inner

~3×1011 cm of the star. The supernova shock (outermost discontinuity) is

located inside the hydrogen envelope at r=2.7×1011 cm. A dense shell

(visible as a ring) has formed behind the shock. Its outer boundary coincides
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with the He/H interface, while the inner boundary is in the process of

steepening into a reverse shock (from Kifonides et al, 2000).

Figure IV.4 Jet-induced explosion (from Khokhlov et al., 1999). The frames show the

density in the x-z plane passing through the center of computational domain,

at 1.08 ns after the jet initiation.  The jet axis (presumably the rotation axis)

is horizontal here. The size of the panel is 6⋅109 cm vertically and 9⋅109 cm

horizontally.  Courtesy A. Khokhlov.

Figure IV.5 Hydrodynamic simulations for the supernova and the laboratory experiment:

spatial profiles of the pressure and the density for the SN at 2000 s (a) and

the laboratory experiment at 20 ns (b) (from Ryutov et al, 2000). (c) The

velocity of the He-H interface in supernova and in the laser experiment

(Kane et al, 1999); the curves are essentially identical, up to the scale

transformation. This is a pre-requisite for making a scaled laboratory

experiment on the evolution of 2D or 3D perturbations. Panel (d) shows a

radiograph obtained in the experiment by Remington et al (1997).

Figure IV.6. Code results vs experiment on coupled interface effects:  (a) The laser beams

strike a 10-µm thick ablator layer on the front surface the Cu, which is of 85

µm average thickness.  The Cu interface is modulated at a wavelength of

200 µm and an amplitude of 15 µm.  The plastic layer, 150 µm-thick,

incorporates a 75-µm thick CH tracer with a 4.3 at. % doping of Br; both

have a density of 1.4 g/cm3. In the experiments, the resulting structures are

radiographed from behind by x-ray backlighting as discussed in Ch. II; (b)

the experimental radiograph and the results of FLASH simulations
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Figure IV.7 Comparison of numerical simulations and experiment on a multi-mode RT

instability (Miles, 2004 a)

Figure IV. 8 Possible transition to the turbulence at the deeply non-linear stage of the RT

instability (see detailed explanations in the text).

Figure IV. 9  Experimental measurements of radiation line transport through an

expanding Al plasma with a large velocity gradient (reproduced from Wark et

al., 1997).  The 1s 2S-2p 2P spectral line of hydrogenic Al is shown for

various observation angles with respect to the laser beam.

Figure V.1. Close-up view of shock waves in the Cygnus Loop. This image was taken

with the Wide Field and Planetary Camera 2 on the Hubble Space Telescope.

The image is a composite. Blue shows emission from doubly ionized oxygen

atoms produced by the heat behind the shock front. Red shows emission from

singly ionized sulfur atoms, which arises well behind the shock front, in gas

that has had a chance to cool since the passage of the shock. Green shows

light emitted by hydrogen atoms. Much of the hydrogen emission comes

from an extremely thin zone (only several times the distance between the Sun

and Earth) immediately behind the shock front itself. These thin regions

appear as sharp, green, filaments in the image. Credit: Jeff Hester (Arizona

State University) and the Space Telescope Science Institute, operated by the

Association of Universities for Research in Astronomy, Inc., from NASA

contract NAS5-26555. The image is reproduced with permission from

AURA/STScI.
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Figure V.2. Interaction of a supernova remnant (the spherical object to the lower left) and

a molecular cloud (the elongated object above). The figure shows a grayscale

image of the x-ray emission, overlaid with a contour image of the radio

emission. Credit: D. Burrows of Penn State and T. Landecker of the

Dominion Radio Astronomy Observatory.

Figure V.3. An image of SNR E0102.2-7219 from Chandra. The colors encode the x-ray

photon energy (red is softer, blue is harder, white is the mean spectrum).

Credit: NASA/CXC/Rutgers/J.Hughes

Figure V.4. Cassiopea-A remnant (J.P. Hughes et al, 2000).

Figure V.5. Formation of the radiative precursor in a strong shock experiment (Bouquet

et al, 2004). See detailed explanations in the text.

Figure V.6. Data from the radiative precursor experiment (Keiter et al, 2002).

Temperature profile inferred from the absorption spectroscopy, along with

results of a simple radiation hydrodynamic model.

Figure V.7. Formation of a collapsed layer in dense Xe gas (Reighard et al, 2004). (a)

Density profiles calculated with the HYADES code for the case with

radiation (solid line) and no radiation (dashed line). (b) simulations of the 2D

geometry, with the finite radius of the shock tube taken into account; (c)

radiographic image showing a remarkable agreement with 2D simulations.

Figure V.8 Effects of the equation of state and radiation on the shock (Michaut et al,

2003, 2004). (a) Thermal wave precursor for the shock wave at Xe (initial

density 1.5×10-4 g/cm3, initial temperature 2 eV). (b,c) Jump conditions for
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the hydrogen gas. Initial density 5×10-4 g/cm3, initial temperature 0.1 eV (b)

and 10 eV (c).

Figure V.9 Blast waves in nitrogen and xenon (Edens et al, 2004). Shock trajectories for

nitrogen (a) and Xenon (b). Structure of the blast wave for the 500 J energy

input for nitrogen (c) and xenon (d).

Figure V.10. The emergence of the second shock driven by the ionized precursor (a, b)

and the corresponding spherically-symmetrical modeling (c) – after Hansen

et al, 2004.

Figure VI.1. (a)  Optical image of the protostellar jet, Herbig-Haro (HH) 47. The bipolar

HH 47 complex embedded in the dense Bok Globule: (Red) [SII] emission;

(green) Ha; (blue) [OIII].  Optical image of the jet, HH 111.  Reproduced

from [Reipurth, 2001].

Figure VI.2  (a) Simulations of high Mach number jets relevant to HH jets, showing the

effect of Mach number in the jet morphology.  Reproduced from [Norman,

1982] (b) Simulations of high Mach number jets relevant to HH jets, showing

the sensitivity to the amount of radiative cooling, reproduced from [Blondin,

1990].  (c) Simulations showing the effect of radiative cooling on a high

Mach number, magnetized jet.  Reproduced from [Frank, 1998].

Figure VI.3.  (a) Simulations, and experimental images of a high Mach number, purely

hydrodynamic (non-radiatively cooled) Al jet experiment done on the Omega

laser, located at the University of Rochester.  Reproduced from [Foster,

2002].  (b) High Mach-number jet image taken on an experiment at the Z

magnetic pinch facility at SNLA. [Bennet, 2004]  Reproduced from [Sinars,
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2004].  (c) Image of a high Mach-number jet driven by direct laser

illumination of the target package, on the Omega laser, and backlight late in

time, at 200 ns. [Courtesy of J. Foster et al., private commun., 2004].  (d)

Simulation of the high Mach number turbulent jet, carried out prior to doing

the experiments, suggesting that the jet might indeed transition into turbulent

hydrodynamics.  Reproduced from [Taylor, 2004].

Figure VI.4.  (a) Images of jets of Al, Fe, and W plasma, created by conical arrays of

wires of the same material at the Imperial College Magpie magnetic pinch

facility.  Reproduced from [Lebedev, 2002] (b) Experimental image of a high

Mach number, radiatively cooled W jet impacting a CH foil downstream,

causing the working surface to reheat, and emit shoft x-rays. Reproduced

from [Lebedev, 2002]  Similar jet deflecting transversely, due to the lateral

flow of plasma (laboratory “stellar wind”) impacting the jet, creating a ram

pressure.  Done on the Magpie z-pinch facility at Imperial College. [Lebedev,

2004].  (c) Images of a magnetic tower jet created by a radial wire array.

[Lebedev, 2004].  (d) Simulations of a magnetic tower jet created by a radial

wire array. [Ciardi, 2005].

Figure VII.1 The Hubble Space Telescope image of the Eagle Nebula. The radiation is

absorbed in a very thin layer near the surface of the cloud.

FigureVII.2. The projection of the Eagle Nebula and neighboring stars on the plane of the

sky (from Pound, 1998). The size of the symbols indicates the relative

strength of the Lyman continuum flux.  Courtesy M. Pound.
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Figure VII.3. Results of an experiment and simulation on the ablation front instability,

from Remington et al. (1993).  Perturbations are viewed side-on at 4.4 ns.

The ablation front corresponds to the lower side of the material. The

experimental radiograph is on the left.  The corresponding contour plot from

a 2D simulation is on the right. The initial wavelength was 100 µm and the

initial peak-to-valley  variation was 4.6 µm.

Figure VII.4. Numerical simulations accounting for the absorption of the ionizing

radiation in the ablation outflow (Mizuta et al, 2005). (a) The left panel

shows the initial perturbation on the cloud surface. (b) The central panel

shows that, when the absorption is artificially turned off, the amplitude of

perturbations grows approximately according to the Rayleigh-Taylor model;

however, if the absorption is “turned on”, the exponential growth is replaced

by a some kind of oscillations. (c) The right panel shows that nonlinear

perturbations can grow even in the presence of absorption.

Fig. VIII.1. (a) Schematic of the interior of Jupiter, reproduced from [Guillot, 1999].  (b)

Phase diagram of high pressure hydrogen, reproduced from [Saumon, 2000].

Fig. VIII.2. (a) Schematic of the interior of Neptune, reproduced from [Hubbard, 1997].

(b) Phase diagram of high pressure water, reproduced from [Cavazzoni,

1999].

Fig. VIII.3. (a) Summary plot of recent high pressure shock Hugoniot measurements of

D2, reproduced from [Knudson, 2003].  (b) Plot showing the sensitivity of

calculations of the interior of Jupiter to the models of the high pressure EOS

of hydrogen, reproduced from [Saumon, 2004]. The different curves
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correspond to the following models.  LM-A: Modified Ross linear mixing

model.  LM-H4: Linear mixing, with D4 chains, D2 molecules, and a D+ + e-

fluid metal.  LM-SOCP: Ross linear mixing model, only with the One

Component Plasma (OCP) replaced with a screened OCP for the metallic

(atomic) fluid free energy.  SCVH-1: the Saumon-Chabrier, Van Horn EOS.

SESAME-p: original SESAME, patched to better reproduce data in the

molecular regime for P < 0.2 Mbar.

Fig. VIII.4.  (a) Plot of the measured EOS of water along the principle Hugoniot, at

pressures up to ~1000 GPa.  (b) Measurements of the reflectivity of shocked

water, versus shock velocity and shock pressure.  (c) Analysis of the

decomposition of DC conductivity of water at high pressure, along the

isentrope appropriate for the interior of Nepture.  Reproduced from [Celliers,

2004].

Fig. IX.1. (a) Images of the intergalactic jet, and the accretion disk around the active

galactic nucleus, NGC 4261, reproduced from [Piner, 2001; Ferrarese, 1996].

(b) X-ray spectrum of the photoionized plasma in the immediate vicinity of

Cyg X-3 x-ray binary, reproduced from [Liedahl, 1996].  (c) Schematic

illustrating a generic accreting x-ray binary system, driving the emission of

photoionized plasma spectra.

Fig. IX.2 (a) X-ray spectrum in a scaled experiment done on the Z pinch facility at

SNLA, reproduced from [Foord, 2004]. The figure shows absorption

spectrum of L-shell iron and K-shell sodium and fluorine lines.  (b)

Calculations of the ionization distribution from the photoionized plasma
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models Cloudy and FLYCHK, compared with that observed in the Z

photoionized plasma experiment.  Reproduced from [Foord, 2004].  (c)

Calculations of the ionization distribution from the photoionized plasma

models NIMP and GALAXY, compared with that observed in the Z

photoionized plasma experiment. Reproduced from [Rose, 2004].
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TABLE IV.1 Comparing characteristic parameters of a SN 1987a plasma in the

He-H transition layer (t~2000 s) and of a laboratory experiment  at t=20 ns since the

onset of the radiation drive .

Parameter                    SN 1987a                    Laboratory experiment

L, cm 9⋅1010 5.3⋅10-3

v, cm/s 2⋅107 1.3⋅105

ρ, g/cm3 7.5⋅10-3 4.2

p, dyn/cm2 3.5⋅1013 6⋅1011

Eu+ 0.29 0.34

Re 2.6⋅1010 1.9⋅106

Pe 2.6⋅105 1.8⋅103

+Eu is the Euler number, Eu=v(ρ/p)1/2.
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TABLE VII.1. Parameters of the Eagle Nebula and possible simulation experiment

Parameter Notation Numerical value in

the Eagle Nebula

Numerical value in

the experiment

Characteristic length-scale L 3⋅1018  cm 6⋅10-3 cm

Average density of the cloud ρ 1.5⋅10-19 g/cm3 2 g/cm3

Ablation pressure pa 5⋅10-9 dyn/cm2 1013

Density of the ablation flow ρa 3⋅10-21 g/cm3 0.02 g/cm3

Temperature in the ablation flow Ta 1 eV 10 eV

Velocity of the ablation flow va 2⋅106  cm/s 5⋅106  cm/s
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FIGURES II.1 – IX.2
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