513 research outputs found
Quantitative analysis of Nipah virus proteins released as virus-like particles reveals central role for the matrix protein
BACKGROUND: Nipah virus (NiV) is an emerging paramyxovirus distinguished by its ability to cause fatal disease in both animal and human hosts. Together with Hendra virus (HeV), they comprise the genus Henipavirus in the Paramyxoviridae family. NiV and HeV are also restricted to Biosafety Level-4 containment and this has hampered progress towards examining details of their replication and morphogenesis. Here, we have established recombinant expression systems to study NiV particle assembly and budding through the formation of virus-like particles (VLPs). RESULTS: When expressed by recombinant Modified Vaccinia virus Ankara (rMVA) or plasmid transfection, individual NiV matrix (M), fusion (F) and attachment (G) proteins were all released into culture supernatants in a membrane-associated state as determined by sucrose density gradient flotation and immunoprecipitation. However, co-expression of F and G along with M revealed a shift in their distribution across the gradient, indicating association with M in VLPs. Protein release was also altered depending on the context of viral proteins being expressed, with F, G and nucleocapsid (N) protein reducing M release, and N release dependent on the co-expression of M. Immunoelectron microscopy and density analysis revealed VLPs that were similar to authentic virus. Differences in the budding dynamics of NiV proteins were also noted between rMVA and plasmid based strategies, suggesting that over-expression by poxvirus may not be appropriate for studying the details of recombinant virus particle assembly and release. CONCLUSION: Taken together, the results indicate that NiV M, F, and G each possess some ability to bud from expressing cells, and that co-expression of these viral proteins results in a more organized budding process with M playing a central role. These findings will aid our understanding of paramyxovirus particle assembly in general and could help facilitate the development of a novel vaccine approach for henipaviruses
Achimota Pararubulavirus 3: A New Bat-Derived Paramyxovirus of the Genus Pararubulavirus
Bats are an important source of viral zoonoses, including paramyxoviruses. The paramyxoviral Pararubulavirus genus contains viruses mostly derived from bats that are common, diverse, distributed throughout the Old World, and known to be zoonotic. Here, we describe a new member of the genus Achimota pararubulavirus 3 (AchPV3) and its isolation from the urine of African straw-coloured fruit bats on primary bat kidneys cells. We sequenced and analysed the genome of AchPV3 relative to other Paramyxoviridae, revealing it to be similar to known pararubulaviruses. Phylogenetic analysis of AchPV3 revealed the failure of molecular detection in the urine sample from which AchPV3 was derived and an attachment protein most closely related with AchPV2—a pararubulavirus known to cause cross-species transmission. Together these findings add to the picture of pararubulaviruses, their sources, and variable zoonotic potential, which is key to our understanding of host restriction and spillover of bat-derived paramyxoviruses. AchPV3 represents a novel candidate zoonosis and an important tool for further study
Constraining the source of mantle plumes
© The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth and Planetary Science Letters 453 (2016): 55-63, doi:10.1016/j.epsl.2015.12.008.In order to link the geochemical signature of hot spot basalts to Earth’s
deep interior, it is first necessary to understand how plumes sample different
regions of the mantle. Here, we investigate the relative amounts of deep
and shallow mantle material that are entrained by an ascending plume and
constrain its source region. The plumes are generated in a viscous syrup
using an isolated heater for a range of Rayleigh numbers. The velocity fields
are measured using stereoscopic Particle-Image Velocimetry, and the concept
of the ‘vortex ring bubble’ is used to provide an objective definition of the
plume geometry. Using this plume geometry, the plume composition can
be analysed in terms of the proportion of material that has been entrained
from different depths. We show that the plume composition can be well
described using a simple empirical relationship, which depends only on a single parameter, the sampling coefficient, Sc. High-Sc plumes are composed
of material which originated from very deep in the fluid domain, while low-Sc
plumes contain material entrained from a range of depths. The analysis is
also used to show that the geometry of the plume can be described using a
similarity solution, in agreement with previous studies. Finally, numerical
simulations are used to vary both the Rayleigh number and viscosity contrast
independently. The simulations allow us to predict the value of the sampling
coefficient for mantle plumes; we find that as a plume reaches the lithosphere,
90% of its composition has been derived from the lowermost 260−750 km in
the mantle, and negligible amounts are derived from the shallow half of the
lower mantle. This result implies that isotope geochemistry cannot provide
direct information about this un-sampled region, and that the various known
geochemical reservoirs must lie in the deepest few hundred kilometres of the
mantle.This work was funded
by the National Science Foundation (grant EAR-055199), the MAPS Dean’s
Office at UCL and the CIDER workshop (EAR-1135452).2016-12-2
Metagenomic study of the viruses of African straw-coloured fruit bats: detection of a chiropteran poxvirus and isolation of a novel adenovirus
Viral emergence as a result of zoonotic transmission constitutes a continuous public health threat. Emerging viruses such as SARS coronavirus, hantaviruses and henipaviruses have wildlife reservoirs. Characterising the viruses of candidate reservoir species in geographical hot spots for viral emergence is a sensible approach to develop tools to predict, prevent, or contain emergence events. Here, we explore the viruses of Eidolon helvum, an Old World fruit bat species widely distributed in Africa that lives in close proximity to humans. We identified a great abundance and diversity of novel herpes and papillomaviruses, described the isolation of a novel adenovirus, and detected, for the first time, sequences of a chiropteran poxvirus closely related with Molluscum contagiosum. In sum, E. helvum display a wide variety of mammalian viruses, some of them genetically similar to known human pathogens, highlighting the possibility of zoonotic transmission
Through the labyrinth of yesteryears
Background Allergy to dog (Canis familiaris) is a worldwide common cause of asthma and allergic rhinitis. However, dander extract in routine diagnostics is not an optimal predictor of IgE-mediated dog allergy. Our objective was to evaluate saliva as an allergen source for improved diagnostics of allergy to dog. Methods IgE-binding proteins in dog saliva and dander extract were analysed by immunoblot and mass spectrometry (LC-MS/MS) using pooled or individual sera from dog-allergic patients (n=13). Sera from 59 patients IgE positive to dander and 55 patients IgE negative to dander but with symptoms to dog were analysed for IgE against saliva and dander by ELISA. Basophil stimulation with dog saliva and dander extract was measured by flow cytometry among three dog-allergic patients. Additionally, IgE-binding protein profiles of saliva from different breeds were investigated by immunoblot. Results Greater number and diversity of IgE-binding proteins was found in saliva compared to dander extract and varied among dog breeds. In saliva, Can f 1, 2, 3 and 6 were identified but also four new saliva allergen candidates. The majority of the 59 dog danderpositive sera (n=44) were IgE positive to dog saliva. Among patients IgE negative to dander, but with symptoms to dog, 20% were IgE positive to saliva. The biological activity of saliva was confirmed by basophil degranulation. Conclusions Dog saliva is an allergen source for improved diagnostics of dog allergy. The IgE-binding protein profile of saliva from different dogs varies.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3488
GATA3-driven Th2 responses inhibit TGF-beta1-induced FOXP3 expression and the formation of regulatory T cells.
Transcription factors act in concert to induce lineage commitment towards Th1, Th2, or T regulatory (Treg) cells, and their counter-regulatory mechanisms were shown to be critical for polarization between Th1 and Th2 phenotypes. FOXP3 is an essential transcription factor for natural, thymus-derived (nTreg) and inducible Treg (iTreg) commitment; however, the mechanisms regulating its expression are as yet unknown. We describe a mechanism controlling iTreg polarization, which is overruled by the Th2 differentiation pathway. We demonstrated that interleukin 4 (IL-4) present at the time of T cell priming inhibits FOXP3. This inhibitory mechanism was also confirmed in Th2 cells and in T cells of transgenic mice overexpressing GATA-3 in T cells, which are shown to be deficient in transforming growth factor (TGF)-beta-mediated FOXP3 induction. This inhibition is mediated by direct binding of GATA3 to the FOXP3 promoter, which represses its transactivation process. Therefore, this study provides a new understanding of tolerance development, controlled by a type 2 immune response. IL-4 treatment in mice reduces iTreg cell frequency, highlighting that therapeutic approaches that target IL-4 or GATA3 might provide new preventive strategies facilitating tolerance induction particularly in Th2-mediated diseases, such as allergy
A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the ‘sticky air' method
Calculating surface topography in geodynamic models is a common numerical problem. Besides other approaches, the so-called ‘sticky air' approach has gained interest as a free-surface proxy at the top boundary. The often used free slip condition is thereby vertically extended by introducing a low density, low viscosity fluid layer. This allows the air/crust interface to behave in a similar manner to a true free surface. We present here a theoretical analysis that provides the physical conditions under which the sticky air approach is a valid approximation of a true free surface. Two cases are evaluated that characterize the evolution of topography on different timescales: (1) isostatic relaxation of a cosine perturbation and (2) topography changes above a rising plume. We quantitatively compare topographies calculated by six different numerical codes (using finite difference and finite element techniques) using three different topography calculation methods: (i) direct calculation of topography from normal stress, (ii) body-fitting methods allowing for meshing the topography and (iii) Lagrangian tracking of the topography on an Eulerian grid. It is found that the sticky air approach works well as long as the term (ηst/ηch)/(hst/L)3 is sufficiently small, where ηst and hst are the viscosity and thickness of the sticky air layer, and ηch and L are the characteristic viscosity and length scale of the model, respectively. Spurious lateral fluctuations of topography, as observed in some marker-based sticky air approaches, may effectively be damped by an anisotropic distribution of markers with a higher number of markers per element in the vertical than in the horizontal directio
In Vitro Evolution of Allergy Vaccine Candidates, with Maintained Structure, but Reduced B Cell and T Cell Activation Capacity
Allergy and asthma to cat (Felis domesticus) affects about 10% of the population in affluent countries. Immediate allergic symptoms are primarily mediated via IgE antibodies binding to B cell epitopes, whereas late phase inflammatory reactions are mediated via activated T cell recognition of allergen-specific T cell epitopes. Allergen-specific immunotherapy relieves symptoms and is the only treatment inducing a long-lasting protection by induction of protective immune responses. The aim of this study was to produce an allergy vaccine designed with the combined features of attenuated T cell activation, reduced anaphylactic properties, retained molecular integrity and induction of efficient IgE blocking IgG antibodies for safer and efficacious treatment of patients with allergy and asthma to cat. The template gene coding for rFel d 1 was used to introduce random mutations, which was subsequently expressed in large phage libraries. Despite accumulated mutations by up to 7 rounds of iterative error-prone PCR and biopanning, surface topology and structure was essentially maintained using IgE-antibodies from cat allergic patients for phage enrichment. Four candidates were isolated, displaying similar or lower IgE binding, reduced anaphylactic activity as measured by their capacity to induce basophil degranulation and, importantly, a significantly lower T cell reactivity in lymphoproliferative assays compared to the original rFel d 1. In addition, all mutants showed ability to induce blocking antibodies in immunized mice.The approach presented here provides a straightforward procedure to generate a novel type of allergy vaccines for safer and efficacious treatment of allergic patients
Development of a TaqMan Allelic Discrimination Assay for detection of Single Nucleotides Polymorphisms associated with anti-malarial drug resistance
<p>Abstract</p> <p>Background</p> <p>Anti-malarial drug resistance poses a threat to current global efforts towards control and elimination of malaria. Several methods are used in monitoring anti-malarial drug resistance. Molecular markers such as single nucleotide polymorphism (SNP) for example are increasingly being used to identify genetic mutations related to anti-malarial drug resistance. Several methods are currently being used in analysis of SNP associated with anti-malarial drug resistance and although each one of these methods has unique strengths and shortcoming, there is still need to improve and/or develop new methods that will close the gap found in the current methods.</p> <p>Methods</p> <p>TaqMan Allelic Discrimination assays for detection of SNPs associated with anti-malarial drug resistance were designed for analysis on Applied Biosystems PCR platform. These assays were designed by submitting SNP sequences associated with anti-malarial drug resistance to Applied Biosystems website. Eleven SNPs associated with resistance to anti-malarial drugs were selected and tested. The performance of each SNP assay was tested by creating plasmid DNAs carrying codons of interests and analysing them for analysis. To test the sensitivity and specificity of each SNP assay, 12 clinical samples were sequenced at codons of interest and used in the analysis. Plasmid DNAs were used to establish the Limit of Detection (LoD) for each assay.</p> <p>Results</p> <p>Data from genetic profiles of the <it>Plasmodium falciparum </it>laboratory strains and sequence data from 12 clinical samples was used as the reference method with which the performance of the SNP assays were compared to. The sensitivity and specificity of each SNP assay was establish at 100%. LoD for each assay was established at 2 GE, equivalent to less than 1 parasite/μL. SNP assays performed well in detecting mixed infection and analysis of clinical samples.</p> <p>Conclusion</p> <p>TaqMan Allelic Discrimination assay provides a good alternative tool in detection of SNPs associated with anti-malarial drug.</p
Establishment, Immortalisation and Characterisation of Pteropid Bat Cell Lines
BACKGROUND: Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. METHODOLOGY/FINDINGS: Black flying foxes (Pteropus alecto) were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. CONCLUSIONS/SIGNIFICANCE: The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study
- …