58 research outputs found

    Epileptic high-frequency network activity in a model of non-lesional temporal lobe epilepsy

    Get PDF
    High-frequency cortical activity, particularly in the 250–600 Hz (fast ripple) band, has been implicated in playing a crucial role in epileptogenesis and seizure generation. Fast ripples are highly specific for the seizure initiation zone. However, evidence for the association of fast ripples with epileptic foci depends on animal models and human cases with substantial lesions in the form of hippocampal sclerosis, which suggests that neuronal loss may be required for fast ripples. In the present work, we tested whether cell loss is a necessary prerequisite for the generation of fast ripples, using a non-lesional model of temporal lobe epilepsy that lacks hippocampal sclerosis. The model is induced by unilateral intrahippocampal injection of tetanus toxin. Recordings from the hippocampi of freely-moving epileptic rats revealed high-frequency activity (4100 Hz), including fast ripples. High-frequency activity was present both during interictal discharges and seizure onset. Interictal fast ripples proved a significantly more reliable marker of the primary epileptogenic zone than the presence of either interictal discharges or ripples (100–250 Hz). These results suggest that fast ripple activity should be considered for its potential value in the pre-surgical workup of non-lesional temporal lobe epilepsy

    The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer

    Get PDF
    The contractile actin-myosin cytoskeleton provides much of the force required for numerous cellular activities such as motility, adhesion, cytokinesis and changes in morphology. Key elements that respond to various signal pathways are the myosin II regulatory light chains (MLC), which participate in actin-myosin contraction by modulating the ATPase activity and consequent contractile force generation mediated by myosin heavy chain heads. Considerable effort has focussed on the role of MLC kinases, and yet the contributions of the myotonic dystrophy-related Cdc42-binding kinases (MRCK) proteins in MLC phosphorylation and cytoskeleton regulation have not been well characterized. In contrast to the closely related ROCK1 and ROCK2 kinases that are regulated by the RhoA and RhoC GTPases, there is relatively little information about the CDC42-regulated MRCKα, MRCKβ and MRCKγ members of the AGC (PKA, PKG and PKC) kinase family. As well as differences in upstream activation pathways, MRCK and ROCK kinases apparently differ in the way that they spatially regulate MLC phosphorylation, which ultimately affects their influence on the organization and dynamics of the actin-myosin cytoskeleton. In this review, we will summarize the MRCK protein structures, expression patterns, small molecule inhibitors, biological functions and associations with human diseases such as cancer

    Drosophila Ribosomal Protein Mutants Control Tissue Growth Non-Autonomously via Effects on the Prothoracic Gland and Ecdysone

    Get PDF
    The ribosome is critical for all aspects of cell growth due to its essential role in protein synthesis. Paradoxically, many Ribosomal proteins (Rps) act as tumour suppressors in Drosophila and vertebrates. To examine how reductions in Rps could lead to tissue overgrowth, we took advantage of the observation that an RpS6 mutant dominantly suppresses the small rough eye phenotype in a cyclin E hypomorphic mutant (cycEJP). We demonstrated that the suppression of cycEJP by the RpS6 mutant is not a consequence of restoring CycE protein levels or activity in the eye imaginal tissue. Rather, the use of UAS-RpS6 RNAi transgenics revealed that the suppression of cycEJP is exerted via a mechanism extrinsic to the eye, whereby reduced Rp levels in the prothoracic gland decreases the activity of ecdysone, the steroid hormone, delaying developmental timing and hence allowing time for tissue and organ overgrowth. These data provide for the first time a rationale to explain the counter-intuitive organ overgrowth phenotypes observed for certain members of the Minute class of Drosophila Rp mutants. They also demonstrate how Rp mutants can affect growth and development cell non-autonomously

    Potential therapeutic targets for chordoma: PI3K/AKT/TSC1/TSC2/mTOR pathway

    Get PDF
    Chordomas are radio- and chemo-resistant tumours and metastasise in as many as 40% of patients. The aim of this study was to identify potential molecular targets for the treatment of chordoma. In view of the reported association of chordoma and tuberous sclerosis complex syndrome, and the available therapeutic agents against molecules in the PI3K/AKT/TSC1/TSC2/mTOR pathway, a tissue microarray of 50 chordoma cases was analysed for expression of active molecules involved in this signalling pathway by immunohistochemistry and a selected number by western blot analysis. Chordomas were positive for p-AKT (92%), p-TSC2 (96%), p-mTOR (27%), total mTOR (75%), p-p70S6K (62%), p-RPS6 (22%), p-4E-BP1 (96%) and eIF-4E (98%). Phosphatase and tensin homologue deleted on chromosome 10 expression was lost in 16% of cases. Mutations failed to be identified in PI3KCA and RHEB1 in the 23 cases for which genomic DNA was available. Fluorescence in situ hybridisation analysis for mTOR and RPS6 loci showed that 11 of 33 and 21 of 44 tumours had loss of one copy of the respective genes, results which correlated with the loss of the relevant total proteins. Fluorescence in situ hybridisation analysis for loci containing TSC1 and TSC2 revealed that all cases analysed harboured two copies of the respective genes. On the basis of p-mTOR and or p-p70S6K expression there is evidence indicating that 65% of the chordomas studied may be responsive to mTOR inhibitors, rapamycin or its analogues, and that patients may benefit from combined therapy including drugs that inhibit AKT

    Loss of Ribosomal Protein L11 Affects Zebrafish Embryonic Development through a p53-Dependent Apoptotic Response

    Get PDF
    Ribosome is responsible for protein synthesis in all organisms and ribosomal proteins (RPs) play important roles in the formation of a functional ribosome. L11 was recently shown to regulate p53 activity through a direct binding with MDM2 and abrogating the MDM2-induced p53 degradation in response to ribosomal stress. However, the studies were performed in cell lines and the significance of this tumor suppressor function of L11 has yet to be explored in animal models. To investigate the effects of the deletion of L11 and its physiological relevance to p53 activity, we knocked down the rpl11 gene in zebrafish and analyzed the p53 response. Contrary to the cell line-based results, our data indicate that an L11 deficiency in a model organism activates the p53 pathway. The L11-deficient embryos (morphants) displayed developmental abnormalities primarily in the brain, leading to embryonic lethality within 6–7 days post fertilization. Extensive apoptosis was observed in the head region of the morphants, thus correlating the morphological defects with apparent cell death. A decrease in total abundance of genes involved in neural patterning of the brain was observed in the morphants, suggesting a reduction in neural progenitor cells. Upregulation of the genes involved in the p53 pathway were observed in the morphants. Simultaneous knockdown of the p53 gene rescued the developmental defects and apoptosis in the morphants. These results suggest that ribosomal dysfunction due to the loss of L11 activates a p53-dependent checkpoint response to prevent improper embryonic development

    The Importance of the Stem Cell Marker Prominin-1/CD133 in the Uptake of Transferrin and in Iron Metabolism in Human Colon Cancer Caco-2 Cells

    Get PDF
    As the pentaspan stem cell marker CD133 was shown to bind cholesterol and to localize in plasma membrane protrusions, we investigated a possible function for CD133 in endocytosis. Using the CD133 siRNA knockdown strategy and non-differentiated human colon cancer Caco-2 cells that constitutively over-expressed CD133, we provide for the first time direct evidence for a role of CD133 in the intracellular accumulation of fluorescently labeled extracellular compounds. Assessed using AC133 monoclonal antibody, CD133 knockdown was shown to improve Alexa488-transferrin (Tf) uptake in Caco-2 cells but had no impact on FITC-dextran or FITC-cholera-toxin. Absence of effect of the CD133 knockdown on Tf recycling established a role for CD133 in inhibiting Tf endocytosis rather than in stimulating Tf exocytosis. Use of previously identified inhibitors of known endocytic pathways and the positive impact of CD133 knockdown on cellular uptake of clathrin-endocytosed synthetic lipid nanocapsules supported that CD133 impact on endocytosis was primarily ascribed to the clathrin pathway. Also, cholesterol extraction with methyl-β-cyclodextrine up regulated Tf uptake at greater intensity in the CD133high situation than in the CD133low situation, thus suggesting a role for cholesterol in the inhibitory effect of CD133 on endocytosis. Interestingly, cell treatment with the AC133 antibody down regulated Tf uptake, thus demonstrating that direct extracellular binding to CD133 could affect endocytosis. Moreover, flow cytometry and confocal microscopy established that down regulation of CD133 improved the accessibility to the TfR from the extracellular space, providing a mechanism by which CD133 inhibited Tf uptake. As Tf is involved in supplying iron to the cell, effects of iron supplementation and deprivation on CD133/AC133 expression were investigated. Both demonstrated a dose-dependent down regulation here discussed to the light of transcriptional and post-transciptional effects. Taken together, these data extend our knowledge of the function of CD133 and underline the interest of further exploring the CD133-Tf-iron network

    Speech Segmentation Using Bayesian Autoregressive Changepoint Detector

    No full text
    This submission is devoted to the study of the Bayesian autoregressive changepoint detector (BCD) and its use for speech segmentation. Results of the detector application to autoregressive signals as well as to real speech are given. BCD basic properties are described and discussed. The novel two-step algorithm consisting of cepstral analysis and BCD for automatic speech segmentation is suggested

    mtDNA of Fulani Nomads and Their Genetic Relationships to Neighboring Sedentary Populations

    No full text
    Despite the large size of the contemporary nomadic Fulani population (roughly 13 million people), the genetic diversity and degree of differentiation of Fulanis compared to other sub-Saharan populations remain unknown. We sampled four Fulani nomad populations (n 186) in three countries of sub-Saharan Africa (Chad, Cameroon, and Burkina Faso) and analyzed sequences of the first hypervariable segment of the mitochondrial DNA. Most of the haplotypes belong to haplogroups of West African origin, such as L1b, L3b, L3d, L2b, L2c, and L2d (79.6% in total), which are all well represented in each of the four geographically separated samples. The haplogroups of Western Eurasian origin, such as J1b, U5, H, and V, were also detected but in rather low frequencies (8.1% in total). As in African hunter-gatherers (Pygmies and Khoisan) and some populations from central Tunisia (Kesra and Zriba), three of the Fulani nomad samples do not reveal significant negative values of Fu’s selective neutrality test. The multidimensional scaling of FST genetic distances of related sub-Saharan populations and the analysis of molecular variance (AMOVA) show clear and close relationships between all pairs of the four Fulani nomad samples, irrespective of their geographic origin. The only group of nomadic Fulani that manifests some similarities with geographically related agricultural populations (from Guinea-Bissau and Nigeria) comes from Tcheboua in northern Cameroon

    Relations génétiques des populations de langues tchadiques parmi les populations péri-sahariennes révélées par l'étude des séquences de l'ADN mitochondriale

    No full text
    Le but principal de cet article est de présenter les nouvelles séquences de l¿ADN mitochondrial (mtDNA) des populations parlant des langues tchadiques, d¿analyser leur diversité génétique et d¿établir leurs relations dans la zone géographique péri-saharienne. Les séquences de mtDNA de quatre populations (Hidé, Kotoko, Mafa et Masa) du Cameroun du Nord ont été obtenues par prélèvement des frottis buccaux des sujets vivant dans leur milieu d¿origine. Les relations génétiques des populations parlant des langues tchadiques ont été étudiées à partir de leur séquences mitochondriales puis comparées à celles des populations péri-sahariennes dèjà publiées. Les résultats de ces analyses nous ont permis de préciser plusieurs points. Tout d¿abord concernant les séquences HVS-I, les populations vivant aujourd¿hui autour du Sahara se distinguent en deux groupes différents. Le premier est composé principalement de populations de l¿Afrique du Nord mais aussi de quelques groupes de l¿Afrique occidentale (Mauritaniens, Saharawi, Wolof, Serer). Le deuxième groupe est composé seulement de populations vivant au sud du Sahara. Pour ce groupe, nous pouvons constater une bonne corrélation entre les distances génétiques et géographiques, alors que l¿appartenance ethnique ou linguistique ne joue pas un rôle très important. Les analyses statistiques et l¿étude phylogéographiques des séquences mitochondriales des populations parlant des langues tchadiques montrent davantage de relations génétiques avec les populations de l¿Afrique orientale qu¿avec celles de l¿Afrique centrale. Cette observation va dans le sens des études linguistiques et archéologiques démontrant les relations assez anciennes entre ces régions séparées aujourd¿hui par les vastes étendus du Sahara
    corecore