14 research outputs found

    Thermal stratification drives movement of a coastal apex predator

    Get PDF
    A characterization of the thermal ecology of fishes is needed to better understand changes in ecosystems and species distributions arising from global warming. The movement of wild animals during changing environmental conditions provides essential information to help predict the future thermal response of large marine predators. We used acoustic telemetry to monitor the vertical movement activity of the common dentex (Dentex dentex), a Mediterranean coastal predator, in relation to the oscillations of the seasonal thermocline during two summer periods in the Medes Islands marine reserve (NW Mediterranean Sea). During the summer stratification period, the common dentex presented a clear preference for the warm suprathermoclinal layer, and adjusted their vertical movements following the depth changes of the thermocline. The same preference was also observed during the night, when fish were less active. Due to this behaviour, we hypothesize that inter-annual thermal oscillations and the predicted lengthening of summer conditions will have a significant positive impact on the metabolic efficiency, activity levels, and population dynamics of this species, particularly in its northern limit of distribution. These changes in the dynamics of an ecosystem’s keystone predator might cascade down to lower trophic levels, potentially re-defining the coastal fish communities of the futureVersión del editor2,92

    Predictive distribution models of European hake in the south-central Mediterranean Sea

    No full text
    The effective management and conservation of fishery resources requires knowledge of their spatial distribution and notably of their critical life history stages. Predictive modelling of the European hake (Merluccius merluccius L., 1758) distribution was developed in the south-central Mediterranean Sea by means of historical fisheries-independent databases available in the region. The study area included the international waters of the south-central Mediterranean Sea and the territorial waters of Italy, Malta, Tunisia and Libya. Distribution maps of predicted population abundance index, and probabilistic occurrence of recruits and large adults were obtained by means of generalized additive models using depth and seafloor characteristics as predictors. Presence/absence data of the two life stages was obtained using threshold values applied to the mean weight of the survey catches. Modelling results largely matched previously reported knowledge on habitat preference of the species and its critical life phases. Hake recruits showed an occurrence peak at 200 m depth with preference for soft bottoms. Large adults preferred deeper and harder bottom substrates. Prediction maps allowed to improve our knowledge on the distributional patterns of one of the most important shared stocks in the south-central Mediterranean. This knowledge is essential for an appropriate development of regional-spatial-based management plans
    corecore