19 research outputs found

    The Inherent Tracer Fingerprint of Captured CO2.

    Get PDF
    Carbon capture and storage (CCS) is the only currently available technology that can directly reduce anthropogenic CO2 emissions arising from fossil fuel combustion. Monitoring and verification of CO2 stored in geological reservoirs will be a regulatory requirement and so the development of reliable monitoring techniques is essential. The isotopic and trace gas composition - the inherent fingerprint - of captured CO2 streams is a potentially powerful, low cost geochemical technique for tracking the fate of injected gas in CCS projects; carbon and oxygen isotopes, in particular, have been used as geochemical tracers in a number of pilot CO2 storage sites, and noble gases are known to be powerful tracers of natural CO2 migration. However, the inherent tracer fingerprint in captured CO2 streams has yet to be robustly investigated and documented and key questions remain, including how consistent is the fingerprint, what controls it, and will it be retained en route to and within the storage reservoir? Here we present the first systematic measurements of the carbon and oxygen isotopes and the trace noble gas composition of anthropogenic CO2 captured from combustion power stations and fertiliser plants. The analysed CO2 is derived from coal, biomass and natural gas feedstocks, using amine capture, oxyfuel and gasification processes, from six different CO2 capture plants spanning four different countries. We find that δ13C values are primarily controlled by the δ13C of the feedstock while δ18O values are predominantly similar to atmospheric O2. Noble gases are of low concentration and exhibit relative element abundances different to expected reservoir baselines and air, with isotopic compositions that are similar to air or fractionated air. The use of inherent tracers for monitoring and verification was provisionally assessed by analysing CO2 samples produced from two field storage sites after CO2 injection. These experiments at Otway, Australia, and Aquistore, Canada, highlight the need for reliable baseline data. Noble gas data indicates noble gas stripping of the formation water and entrainment of Kr and Xe from an earlier injection experiment at Otway, and inheritance of a distinctive crustal radiogenic noble gas fingerprint at Aquistore. This fingerprint can be used to identify unplanned migration of the CO2 to the shallow subsurface or surface

    Poromechanical controls on spontaneous imbibition in earth materials

    Get PDF
    Over the last century, the state of stress in the earth’s upper crust has undergone rapid changes because of human activities associated with fluid withdrawal and injection in subsurface formations. The stress dependency of multiphase flow mechanisms in earth materials is a substantial challenge to understand, quantify, and model for many applications in groundwater hydrology, applied geophysics, CO2 subsurface storage, and the wider geoenergy field (e.g., geothermal energy, hydrogen storage, hydrocarbon recovery). Here, we conduct core-scale experiments using N2/water phases to study primary drainage followed by spontaneous imbibition in a carbonate specimen under increasing isotropic effective stress and isothermal conditions. Using X-ray computed micro-tomography images of the unconfined specimen, we introduce a novel coupling approach to reconstruct pore-deformation and simulate multiphase flow inside the deformed pore-space followed by a semi-analytical calculation of spontaneous imbibition. We show that the irreducible water saturation increases while the normalized volume of spontaneously imbibed water into the specimen decreases (46–25%) in response to an increase in effective stress (0–30 MPa), leading to higher residual gas saturations. Furthermore, the imbibition rate decreases with effective stress, which is also predicted by a numerical model, due to a decrease in water relative permeability as the pore-space becomes more confined and tortuous. This fundamental study provides new insights into the physics of multiphase fluid transport, CO2 storage capacity, and recovery of subsurface resources incorporating the impact of poromechanics

    Quasistatic fluid-fluid displacement in porous media: Invasion-percolation through a wetting transition

    No full text
    We study the influence of wettability on the morphology of fluid-fluid displacement through analog porous media in the limit of vanishing flow rates. We introduce an invasion-percolation model that considers cooperative pore filling and corner-flow mechanisms and captures interface motion at the pore scale for all quasistatic flow regimes between strong drainage and strong imbibition. We validate the method against recent experimental observations of wetting transition in microfluidic cells patterned with circular posts and we use it to explore the sensitivity of fluid invasion to wettability heterogeneity, post spacing, and post height. Our model therefore extends the Cieplak-Robbins description of quasistatic fluid invasion by reproducing the wetting transition in strong imbibition, a feature that requires incorporating three-dimensional effects
    corecore