535 research outputs found
Plant Selection for Ethnobotanical Uses on the Amalfi Coast (Southern Italy)
Background
Many ethnobotanical studies have investigated selection criteria for medicinal and non-medicinal plants. In this paper we test several statistical methods using different ethnobotanical datasets in order to 1) define to which extent the nature of the datasets can affect the interpretation of results; 2) determine if the selection for different plant uses is based on phylogeny, or other selection criteria.
Methods
We considered three different ethnobotanical datasets: two datasets of medicinal plants and a dataset of non-medicinal plants (handicraft production, domestic and agro-pastoral practices) and two floras of the Amalfi Coast. We performed residual analysis from linear regression, the binomial test and the Bayesian approach for calculating under-used and over-used plant families within ethnobotanical datasets. Percentages of agreement were calculated to compare the results of the analyses. We also analyzed the relationship between plant selection and phylogeny, chorology, life form and habitat using the chi-square test. Pearson’s residuals for each of the significant chi-square analyses were examined for investigating alternative hypotheses of plant selection criteria.
Results
The three statistical analysis methods differed within the same dataset, and between different datasets and floras, but with some similarities. In the two medicinal datasets, only Lamiaceae was identified in both floras as an over-used family by all three statistical methods. All statistical methods in one flora agreed that Malvaceae was over-used and Poaceae under-used, but this was not found to be consistent with results of the second flora in which one statistical result was non-significant. All other families had some discrepancy in significance across methods, or floras. Significant over- or under-use was observed in only a minority of cases. The chi-square analyses were significant for phylogeny, life form and habitat. Pearson’s residuals indicated a non-random selection of woody species for non-medicinal uses and an under-use of plants of temperate forests for medicinal uses.
Conclusions
Our study showed that selection criteria for plant uses (including medicinal) are not always based on phylogeny. The comparison of different statistical methods (regression, binomial and Bayesian) under different conditions led to the conclusion that the most conservative results are obtained using regression analysis
Nonequilibrium properties of graphene probed by superconducting tunnel spectroscopy
© 2019 American Physical Society. We report on nonequilibrium properties of graphene probed by superconducting tunnel spectroscopy. A hexagonal boron nitride (hBN) tunnel barrier in combination with a superconducting Pb contact is used to extract the local energy distribution function of the quasiparticles in graphene samples in different transport regimes. In the cases where the energy distribution function resembles a Fermi-Dirac distribution, the local electron temperature can directly be accessed. This allows us to study the cooling mechanisms of hot electrons in graphene. In the case of long samples (device length L much larger than the electron-phonon scattering length le-ph), cooling through acoustic phonons is dominant. We find a crossover from the dirty limit with a power law T3 at low temperature to the clean limit at higher temperatures with a power law T4 and a deformation potential of 13.3 eV. For shorter samples, where L is smaller than le-ph but larger than the electron-electron scattering length le-e, the well-known cooling through electron out-diffusion is found. Interestingly, we find strong indications of an enhanced Lorenz number in graphene. We also find evidence of a non-Fermi-Dirac distribution function, which is a result of noninteracting quasiparticles in very short samples.This work has received funding from ERC project TopSupra (787414), the European Union Horizon 2020 research and innovation programme under Grant Agreement No. 696656 (Graphene Flagship), the Swiss National Science Foundation, the Swiss Nanoscience Institute, the Swiss NCCR QSIT, Topograph, ISpinText FlagERA networks and from the OTKA FK-123894 grants. P.M. acknowledges support from the Bolyai Fellowship and as a Marie Curie fellow. This research was supported by the National Research, Development and Innovation Fund of Hungary within the Quantum Technology National Excellence Program (Project No. 2017-1.2.1-NKP-2017-00001). S.H., Sa.C., and R.W. acknowledge support from the EPSRC (EP/K016636/1, EP/M506485/1)
Breakdown of the adiabatic limit in low dimensional gapless systems
It is generally believed that a generic system can be reversibly transformed
from one state into another by sufficiently slow change of parameters. A
standard argument favoring this assertion is based on a possibility to expand
the energy or the entropy of the system into the Taylor series in the ramp
speed. Here we show that this argumentation is only valid in high enough
dimensions and can break down in low-dimensional gapless systems. We identify
three generic regimes of a system response to a slow ramp: (A) mean-field, (B)
non-analytic, and (C) non-adiabatic. In the last regime the limits of the ramp
speed going to zero and the system size going to infinity do not commute and
the adiabatic process does not exist in the thermodynamic limit. We support our
results by numerical simulations. Our findings can be relevant to
condensed-matter, atomic physics, quantum computing, quantum optics, cosmology
and others.Comment: 11 pages, 5 figures, to appear in Nature Physics (originally
submitted version
High-fidelity quantum driving
The ability to accurately control a quantum system is a fundamental
requirement in many areas of modern science such as quantum information
processing and the coherent manipulation of molecular systems. It is usually
necessary to realize these quantum manipulations in the shortest possible time
in order to minimize decoherence, and with a large stability against
fluctuations of the control parameters. While optimizing a protocol for speed
leads to a natural lower bound in the form of the quantum speed limit rooted in
the Heisenberg uncertainty principle, stability against parameter variations
typically requires adiabatic following of the system. The ultimate goal in
quantum control is to prepare a desired state with 100% fidelity. Here we
experimentally implement optimal control schemes that achieve nearly perfect
fidelity for a two-level quantum system realized with Bose-Einstein condensates
in optical lattices. By suitably tailoring the time-dependence of the system's
parameters, we transform an initial quantum state into a desired final state
through a short-cut protocol reaching the maximum speed compatible with the
laws of quantum mechanics. In the opposite limit we implement the recently
proposed transitionless superadiabatic protocols, in which the system perfectly
follows the instantaneous adiabatic ground state. We demonstrate that
superadiabatic protocols are extremely robust against parameter variations,
making them useful for practical applications.Comment: 17 pages, 4 figure
Geomagnetic survey of Italy. Repeat station network and magnetic maps: a short report
Starting in 1977, two geomagnetic project were undertaken in the frame of the >of the Consiglio Nazionale delle Ricerche(Project>of the National Research Council);1)a new national network of repeat stations for total field F, horizontal component H, vertical component Z, declination D.2)a 2nd order network of stations for F,Z,H to produce geomagnetic maps of Italy. The two projects were carried out by a > made up of Operating Units from Institutions to which the authors belong. The field work ended in 1981. The Istituto Nazionale di Geofisica coordinated the operations for both projects. This paper is intended to give a short report to the international scientific community on this work which has so far only appeared in the Italian literature.Published365-3681A. Geomagnetismo e PaleomagnetismoN/A or not JC
Dynamics of a Quantum Phase Transition and Relaxation to a Steady State
We review recent theoretical work on two closely related issues: excitation
of an isolated quantum condensed matter system driven adiabatically across a
continuous quantum phase transition or a gapless phase, and apparent relaxation
of an excited system after a sudden quench of a parameter in its Hamiltonian.
Accordingly the review is divided into two parts. The first part revolves
around a quantum version of the Kibble-Zurek mechanism including also phenomena
that go beyond this simple paradigm. What they have in common is that
excitation of a gapless many-body system scales with a power of the driving
rate. The second part attempts a systematic presentation of recent results and
conjectures on apparent relaxation of a pure state of an isolated quantum
many-body system after its excitation by a sudden quench. This research is
motivated in part by recent experimental developments in the physics of
ultracold atoms with potential applications in the adiabatic quantum state
preparation and quantum computation.Comment: 117 pages; review accepted in Advances in Physic
Quantum Quench in the Transverse Field Ising chain I: Time evolution of order parameter correlators
We consider the time evolution of order parameter correlation functions after
a sudden quantum quench of the magnetic field in the transverse field Ising
chain. Using two novel methods based on determinants and form factor sums
respectively, we derive analytic expressions for the asymptotic behaviour of
one and two point correlators. We discuss quenches within the ordered and
disordered phases as well as quenches between the phases and to the quantum
critical point. We give detailed account of both methods.Comment: 65 pages, 21 figures, some typos correcte
Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes
The MAGIC stereoscopic system collected 69 hours of Crab Nebula data between
October 2009 and April 2011. Analysis of this data sample using the latest
improvements in the MAGIC stereoscopic software provided an unprecedented
precision of spectral and night-by-night light curve determination at gamma
rays. We derived a differential spectrum with a single instrument from 50 GeV
up to almost 30 TeV with 5 bins per energy decade. At low energies, MAGIC
results, combined with Fermi-LAT data, show a flat and broad Inverse Compton
peak. The overall fit to the data between 1 GeV and 30 TeV is not well
described by a log-parabola function. We find that a modified log-parabola
function with an exponent of 2.5 instead of 2 provides a good description of
the data (). Using systematic uncertainties of red the MAGIC and
Fermi-LAT measurements we determine the position of the Inverse Compton peak to
be at (53 3stat + 31syst -13syst) GeV, which is the most precise
estimation up to date and is dominated by the systematic effects. There is no
hint of the integral flux variability on daily scales at energies above 300 GeV
when systematic uncertainties are included in the flux measurement. We consider
three state- of-the-art theoretical models to describe the overall spectral
energy distribution of the Crab Nebula. The constant B-field model cannot
satisfactorily reproduce the VHE spectral measurements presented in this work,
having particular difficulty reproducing the broadness of the observed IC peak.
Most probably this implies that the assumption of the homogeneity of the
magnetic field inside the nebula is incorrect. On the other hand, the
time-dependent 1D spectral model provides a good fit of the new VHE results
when considering a 80 {\mu}G magnetic field. However, it fails to match the
data when including the morphology of the nebula at lower wavelengths.Comment: accepted by JHEAp, 9 pages, 6 figure
- …