6,172 research outputs found

    Evershed clouds as precursors of moving magnetic features around sunspots

    Full text link
    The relation between the Evershed flow and moving magnetic features (MMFs) is studied using high-cadence, simultaneous spectropolarimetric measurements of a sunspot in visible (630.2 nm) and near-infrared (1565 nm) lines. Doppler velocities, magnetograms, and total linear polarization maps are calculated from the observed Stokes profiles. We follow the temporal evolution of two Evershed clouds that move radially outward along the same penumbral filament. Eventually, the clouds cross the visible border of the spot and enter the moat region, where they become MMFs. The flux patch farther from the sunspot has the same polarity of the spot, while the MMF closer to it has opposite polarity and exhibits abnormal circular polarization profiles. Our results provide strong evidence that at least some MMFs are the continuation of the penumbral Evershed flow into the moat. This, in turn, suggests that MMFs are magnetically connected to sunspots.Comment: To appear in ApJ Letters, Vol 649, 2006 September 20 issu

    An Adaptive Sampling Scheme to Efficiently Train Fully Convolutional Networks for Semantic Segmentation

    Full text link
    Deep convolutional neural networks (CNNs) have shown excellent performance in object recognition tasks and dense classification problems such as semantic segmentation. However, training deep neural networks on large and sparse datasets is still challenging and can require large amounts of computation and memory. In this work, we address the task of performing semantic segmentation on large data sets, such as three-dimensional medical images. We propose an adaptive sampling scheme that uses a-posterior error maps, generated throughout training, to focus sampling on difficult regions, resulting in improved learning. Our contribution is threefold: 1) We give a detailed description of the proposed sampling algorithm to speed up and improve learning performance on large images. We propose a deep dual path CNN that captures information at fine and coarse scales, resulting in a network with a large field of view and high resolution outputs. We show that our method is able to attain new state-of-the-art results on the VISCERAL Anatomy benchmark

    Neural mechanisms of resistance to peer influence in early adolescence

    Get PDF
    During the shift from a parent-dependent child to a fully autonomous adult, peers take on a significant role in shaping the adolescent’s behaviour. Peer-derived influences are not always positive, however. Here we explore neural correlates of inter-individual differences in the probability of resisting peer influence in early adolescence. Using functional magnetic-resonance imaging (fMRI), we found striking differences between 10-year old children with high and low resistance to peer influence in their brain activity during observation of angry hand-movements and angry facial expressions: compared with subjects with low resistance to peer influence, individuals with high resistance showed a highly coordinated brain activity in neural systems underlying perception of action and decision making. These findings suggest that the probability of resisting peer influence depends on neural interactions during observation of emotion-laden actions

    Consistent thermodynamic derivative estimates for tabular equations of state

    Full text link
    Numerical simulations of compressible fluid flows require an equation of state (EOS) to relate the thermodynamic variables of density, internal energy, temperature, and pressure. A valid EOS must satisfy the thermodynamic conditions of consistency (derivation from a free energy) and stability (positive sound speed squared). When phase transitions are significant, the EOS is complicated and can only be specified in a table. For tabular EOS's such as SESAME from Los Alamos National Laboratory, the consistency and stability conditions take the form of a differential equation relating the derivatives of pressure and energy as functions of temperature and density, along with positivity constraints. Typical software interfaces to such tables based on polynomial or rational interpolants compute derivatives of pressure and energy and may enforce the stability conditions, but do not enforce the consistency condition and its derivatives. We describe a new type of table interface based on a constrained local least squares regression technique. It is applied to several SESAME EOS's showing how the consistency condition can be satisfied to round-off while computing first and second derivatives with demonstrated second-order convergence. An improvement of 14 orders of magnitude over conventional derivatives is demonstrated, although the new method is apparently two orders of magnitude slower, due to the fact that every evaluation requires solving an 11-dimensional nonlinear system.Comment: 29 pages, 9 figures, 16 references, submitted to Phys Rev

    Quiet Sun magnetic fields from space-borne observations: simulating Hinode's case

    Full text link
    We examine whether or not it is possible to derive the field strength distribution of quiet Sun internetwork regions from very high spatial resolution polarimetric observations in the visible. In particular, we consider the case of the spectropolarimeter attached to the Solar Optical Telescope aboard Hinode. Radiative magneto-convection simulations are used to synthesize the four Stokes profiles of the \ion{Fe}{1} 630.2 nm lines. Once the profiles are degraded to a spatial resolution of 0\farcs32 and added noise, we infer the atmospheric parameters by means of Milne-Eddington inversions. The comparison of the derived values with the real ones indicates that the visible lines yield correct internetwork field strengths and magnetic fluxes, with uncertainties smaller than \sim150 G, when a stray light contamination factor is included in the inversion. Contrary to the results of ground-based observations at 1\arcsec, weak fields are retrieved wherever the field is weak in the simulation.Comment: Accepted for publication in ApJ Letter

    The formation and disintegration of magnetic bright points observed by Sunrise/IMaX

    Full text link
    The evolution of the physical parameters of magnetic bright points (MBPs) located in the quiet Sun (mainly in the interwork) during their lifetime is studied. First we concentrate on the detailed description of the magnetic field evolution of three MBPs. This reveals that individual features follow different, generally complex, and rather dynamic scenarios of evolution. Next we apply statistical methods on roughly 200 observed MBP evolutionary tracks. MBPs are found to be formed by the strengthening of an equipartition field patch, which initially exhibits a moderate downflow. During the evolution, strong downdrafts with an average velocity of 2.4 km/s set in. These flows, taken together with the concurrent strengthening of the field, suggest that we are witnessing the occurrence of convective collapses in these features, although only 30% of them reach kG field strengths. This fraction might turn out to be larger when the new 4 m class solar telescopes are operational as observations of MBPs with current state of the art instrumentation could still be suffering from resolution limitations. Finally, when the bright point disappears (although the magnetic field often continues to exist) the magnetic field strength has dropped to the equipartition level and is generally somewhat weaker than at the beginning of the MBP's evolution. Noteworthy is that in about 10% of the cases we observe in the vicinity of the downflows small-scale strong (exceeding 2 km/s) intergranular upflows related spatially and temporally to these downflows.Comment: 19 pages, 13 figures; final version published in "The Astrophysical Journal

    Electrocatalytic Oxidation of Cyanide on Copper-doped Cobalt Oxide Electrodes

    Get PDF
    [EN] Copper and copper oxides are well-known excellent catalysts in several chemical processes, but their low mechanical and electrochemical stability restrict their direct utilization as electrodes in electrolytic processes. In this work, the incorporation of copper into cobalt oxide (CuxCo3-xO4) is presented as an excellent approach to obtain highly active and robust copper-based electrocatalysts. Particularly, the electrocatalytic performance of Ti-supported CuxCo3-xO4 electrodes (with 0 <= x <= 1.5) has been studied for the oxidation' of cyanide in alkaline media. Cyclic voltammetry and electrolysis runs show an outstanding effect of Cu on the activity, efficiency and kinetics of spinel CuxCo3-xO4 electrodes for CN(-)electro-oxidation. Despite being active oxides with high activity towards water oxidation, copper saturated (x=1.0) and oversaturated (x=1.5) spinels exhibit unprecedented 100% current efficiencies for the electro-oxidation of CN- in aqueous electrolyte. In situ surface enhanced Raman spectroscopy (SERS) reveals the specific adsorption of CN- ions on surface Cu species to be involved in the electrocatalytic oxidation mechanism. This electrocatalytic activity has been attributed to surface Cu(II) in the spinel lattice. Furthermore, the CuxCo3-xO4 electrodes also display high electrochemical stability. Therefore, they are considered excellent candidates for the sustainable electrochemical elimination of highly toxic cyanides.Financial support from the Spanish Ministerio de Economia y Competitividad and FEDER funds (MAT2016-76595-R, IJCI-2014-20012) and from the Generalitat Valenciana (PROMETEO2013/038) is gratefully acknowledged.Berenguer, R.; La Rosa-Toro, A.; Quijada, C.; Morallon, E. (2017). Electrocatalytic Oxidation of Cyanide on Copper-doped Cobalt Oxide Electrodes. Applied Catalysis B Environmental. 207:286-296. https://doi.org/10.1016/j.apcatb.2017.01.078S28629620
    corecore