25,461 research outputs found
Recommended from our members
Cryogenic Mechanical Alloying of Poly (ether ether ketone) - Polycarbonate Composite Powders for Selective Laser Sintering
Mechanical alloying is a solid state processing technique traditionally used in the
metallurgical industry to extend solubility limits in alloy systems. Mechanical alloying can also
be used to blend polymer systems at ambient or cryogenic temperatures. In this work, cryogenic
mechanical alloying was employed to create composite powders of Poly (ether ether ketone)
(PEEK) - Polycarbonate (PC) for use in selective laser sintering applications. The
microstructural development of the PEEK-PC system that occurs during laser sintering and the
effects of this microstructure on mechanical properties of the laser sintered parts was
investigated.Mechanical Engineerin
A variable-geometry combustor used to study primary and secondary zone stoichiometry
A combustion program is underway to evaluate fuel quality effects on gas turbine combustors. A rich-lean variable geometry combustor design was chosen to evaluate fuel quality effects over a wide range of primary and secondary zone equivalence ratios at simulated engine operating conditions. The first task of this effort, was to evaluate the performance of the variable geometry combustor. The combustor incorporates three stations of variable geometry to control primary and secondary zone equivalence ratio and overall pressure loss. Geometry changes could be made while a test was in progress through the use of remote control actuators. The primary zone liner was water cooled to eliminate the concern of liner durability. Emissions and performance data were obtained at simulated engine conditions of 80 percent and full power. Inlet air temperature varied from 611 to 665K, inlet total pressure varied from 1.02 to 1.24 MPa, reference velocity was a constant 1400 K
The design of linear multivariable control systems using modern control theory /with applications to coupled core reactor control/
Linear multivariable control system design using modern control theory, and application to coupled core reactor contro
Domain structure of epitaxial Co films with perpendicular anisotropy
Epitaxial hcp Cobalt films with pronounced c-axis texture have been prepared
by pulsed lased deposition (PLD) either directly onto Al2O3 (0001) single
crystal substrates or with an intermediate Ruthenium buffer layer. The crystal
structure and epitaxial growth relation was studied by XRD, pole figure
measurements and reciprocal space mapping. Detailed VSM analysis shows that the
perpendicular anisotropy of these highly textured Co films reaches the
magnetocrystalline anisotropy of hcp-Co single crystal material. Films were
prepared with thickness t of 20 nm < t < 100 nm to study the crossover from
in-plane magnetization to out-of-plane magnetization in detail. The analysis of
the periodic domain pattern observed by magnetic force microscopy allows to
determine the critical minimum thickness below which the domains adopt a pure
in-plane orientation. Above the critical thickness the width of the stripe
domains is evaluated as a function of the film thickness and compared with
domain theory. Especially the discrepancies at smallest film thicknesses show
that the system is in an intermediate state between in-plane and out-of-plane
domains, which is not described by existing analytical domain models
Discovery of meteorites on a blue-ice field near the Frontier Mountains, North Victoria Land, Antarctica
A high concentration of meteorites were discovered on a blue ice field northeast of the Frontier Mountains. As a result of a systematic search, a total of 42 meteorites were recovered. The current glacial situation has evolved through various stages, which are discussed in relationship to the concentration of meteorites. Ice flow patterns are summarized. The chemical composition and terrestrial ages of the meteorites are discussed
A 'p-n' diode with hole and electron-doped lanthanum manganite
The hole-doped manganite La0.7Ca0.3MnO3 and the electron-doped manganite
La0.7Ce0.3MnO3 undergo an insulator to metal transition at around 250 K, above
which both behave as a polaronic semiconductor. We have successfully fabricated
an epitaxial trilayer (La0.7Ca0.3MnO3/SrTiO3/La0.7Ce0.3MnO3), where SrTiO3 is
an insulator. At room temperature, i.e. in the semiconducting regime, it
exhibits asymmetric current-voltage (I-V) characteristics akin to a p-n diode.
The observed asymmetry in the I-V characteristics disappears at low
temperatures where both the manganite layers are metallic. To the best of our
knowledge, this is the first report of such a p-n diode, using the polaronic
semiconducting regime of doped manganites.Comment: PostScript text and 2 figures, to be published in Appl. Phys. Lett
The effect of cave illumination on bats
Artificial light at night has large impacts on nocturnal wildlife such as bats, yet its effect varies with wavelength of light, context, and across species involved. Here, we studied in two experiments how wild bats of cave-roosting species (Rhinolophus mehelyi, R. euryale, Myotis capaccinii and Miniopterus schreibersii) respond to LED lights of different colours. In dual choice experiments, we measured the acoustic activity of bats in response to neutral-white, red or amber LED at a cave entrance and in a flight room – mimicking a cave interior. In the flight room, M. capaccinii and M. schreibersii preferred red to white light, but showed no preference for red over amber, or amber over white light. In the cave entrance experiment, all light colours reduced the activity of all emerging species, yet red LED had the least negative effect. Rhinolophus species reacted most strongly, matching their refusal to fly at all under any light treatment in the flight room. We conclude that the placement and light colour of LED light should be considered carefully in lighting concepts for caves both in the interior and at the entrance. In a cave interior, red LED light could be chosen – if needed at all – for careful temporary illumination of areas, yet areas important for bats should be avoided based on the precautionary principle. At cave entrances, the high sensitivity of most bat species, particularly of Rhinolophus spp., towards light sources almost irrespective of colour, calls for utmost caution when illuminating cave entrances
Implant Prophylaxis: The Next Best Practice Toward Asepsis in Spine Surgery.
Study designA literature review.ObjectivesAn evaluation of the contaminants prevalent on implants used for surgery and the aseptic methods being employed against them.MethodsPubMed was searched for articles published between 2000 and 2017 for studies evaluating the contaminants present on spine implants, and associated pre- and intraoperative implant processing and handling methodology suggested to avoid them. Systematic reviews, observational studies, bench-top studies, and expert opinions were included.ResultsEleven studies were identified whose major focus was the asepsis of implants to reduce the incidence of surgical site infection incidences during surgery. These studies measured the colony forming units of bacteria on sterilized implants and/or gloves from the surgeon, scrub nurse, and assistants, as well as reductions of surgical site infection rates in spine surgery due to changes in implant handling techniques. Additionally, the search included assessments of endotoxins and carbohydrates present on reprocessed implants. The suggested changes to surgical practice based on these studies included handling implants with only fresh gloves, keeping implants covered until the immediate time of use, reducing operating room traffic, avoiding reprocessing of implants (ie, providing terminally sterilized implants), and avoiding touching the implants altogether.ConclusionsBoth reprocessing (preoperative) and handling (intraoperative) of implants seem to lead to contamination of sterilized implants. Using a terminally sterilized device may mitigate reprocessing (preoperative implant prophylaxis), whereas the use of fresh gloves for handling each implant and/or a permanent shielding technique (intraoperative implant prophylaxis) could potentially avoid recontamination at the theatre
Rotational quenching rate coefficients for H_2 in collisions with H_2 from 2 to 10,000 K
Rate coefficients for rotational transitions in H_2 induced by H_2 impact are
presented. Extensive quantum mechanical coupled-channel calculations based on a
recently published (H_2)_2 potential energy surface were performed. The
potential energy surface used here is presumed to be more reliable than
surfaces used in previous work. Rotational transition cross sections with
initial levels J <= 8 were computed for collision energies ranging between
0.0001 and 2.5 eV, and the corresponding rate coefficients were calculated for
the temperature range 2 < T <10,000 K. In general, agreement with earlier
calculations, which were limited to 100-6000 K, is good though discrepancies
are found at the lowest and highest temperatures. Low-density-limit cooling
functions due to para- and ortho-H_2 collisions are obtained from the
collisional rate coefficients. Implications of the new results for non-thermal
H_2 rotational distributions in molecular regions are also investigated
Analysis of severe atmospheric disturbances from airline flight records
Advanced methods were developed to determine time varying winds and turbulence from digital flight data recorders carried aboard modern airliners. Analysis of several cases involving severe clear air turbulence encounters at cruise altitudes has shown that the aircraft encountered vortex arrays generated by destabilized wind shear layers above mountains or thunderstorms. A model was developed to identify the strength, size, and spacing of vortex arrays. This model is used to study the effects of severe wind hazards on operational safety for different types of aircraft. The study demonstrates that small remotely piloted vehicles and executive aircraft exhibit more violent behavior than do large airliners during encounters with high-altitude vortices. Analysis of digital flight data from the accident at Dallas/Ft. Worth in 1985 indicates that the aircraft encountered a microburst with rapidly changing winds embedded in a strong outflow near the ground. A multiple-vortex-ring model was developed to represent the microburst wind pattern. This model can be used in flight simulators to better understand the control problems in severe microburst encounters
- …
