794 research outputs found

    Impact of cloud-borne aerosol representation on aerosol direct and indirect effects

    Get PDF
    International audienceAerosol particles attached to cloud droplets are much more likely to be removed from the atmosphere and are much less efficient at scattering sunlight than if unattached. Models used to estimate direct and indirect effects of aerosols employ a variety of representations of such cloud-borne particles. Here we use a global aerosol model with a relatively complete treatment of cloud-borne particles to estimate the sensitivity of simulated aerosol, cloud and radiation fields to various approximations to the representation of cloud-borne particles. We find that neglecting transport of cloud-borne particles introduces little error, but that diagnosing cloud-borne particles produces global mean biases of 20% and local errors of up to 40% for aerosol, droplet number, and direct and indirect radiative forcing. Aerosol number, aerosol optical depth and droplet number are significantly underestimated in regions and seasons where and when wet removal is primarily by stratiform rather than convective clouds (polar regions during winter), but direct and indirect effects are less biased because of the limited sunlight there and then. A treatment that predicts the total mass concentration of cloud-borne particles for each mode yields smaller errors and runs 20% faster than the complete treatment. The errors are much smaller than current estimates of uncertainty in direct and indirect effects of aerosols, which suggests that the treatment of cloud-borne aerosol is not a significant source of uncertainty in estimates of direct and indirect effects

    Ultrasonographic-based predictive factors influencing successful return to racing after superficial digital flexor tendon injuries in flat racehorses: a retrospective cohort study in 469 Thoroughbred racehorses in Hong Kong

    Get PDF
    Background: Superficial digital flexor tendon (SDFT) injury is an important health and welfare concern in racehorses. It is generally diagnosed with ultrasonography, predictive ultrasonographic features have not been reported. Objectives: To determine ultrasonographic features of forelimb SDFT injury at initial presentation in Thoroughbred racehorses, that could predict a successful return to racing (completing > or = 5 races). Study Design: Retrospective cohort study. Methods: Digitised ultrasonographic images of 469 horses with forelimb SDFT injuries from the Hong Kong Jockey Club (2003-2014) were evaluated, using a previously validated ultrasonographic scoring system. Six ultrasonographic parameters were evaluated (type and extent of the injury, location, echogenicity, cross-sectional area and longitudinal fiber pattern of the maximal injury zone (MIZ)), as well as horse signalment, retirement date and number of races before and after injury. Data was analysed by generalized linear regression with significance at P<0.05. Results: Cases were divided in two groups: 1) For cases of SDFT tendonitis with core lesions, cross-sectional area at the MIZ was the most significant factor determining a successful return to racing (p=0.03). If the lesion was or > or = 50% this decreased to 11-16%. 2) For cases of SDFT tendonitis without a core lesion, longitudinal fiber pattern at the MIZ best predicted a successful return to racing (P=0.002); if the affected longitudinal fiber pattern was or = 75% this decreased to 14%. Main Limitations: Prognostic information may not be applicable to other breeds/disciplines. Conclusions: This is the first study to describe ultrasonographic features of forelimb SDFT injuries at initial presentation that were predictive of successful return to racing. The outcomes will assist with early, evidence-based decisions on prognosis in Thoroughbred racehorses

    Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction

    Get PDF
    This paper describes and evaluates a new framework for modeling kinetic gas-particle partitioning of secondary organic aerosol (SOA) that takes into account diffusion and chemical reaction within the particle phase. The framework uses a combination of (a) an analytical quasi-steady-state treatment for the diffusion–reaction process within the particle phase for fast-reacting organic solutes, and (b) a two-film theory approach for slow- and nonreacting solutes. The framework is amenable for use in regional and global atmospheric models, although it currently awaits specification of the various gas- and particle-phase chemistries and the related physicochemical properties that are important for SOA formation. Here, the new framework is implemented in the computationally efficient Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) to investigate the competitive growth dynamics of the Aitken and accumulation mode particles. Results show that the timescale of SOA partitioning and the associated size distribution dynamics depend on the complex interplay between organic solute volatility, particle-phase bulk diffusivity, and particle-phase reactivity (as exemplified by a pseudo-first-order reaction rate constant), each of which can vary over several orders of magnitude. In general, the timescale of SOA partitioning increases with increase in volatility and decrease in bulk diffusivity and rate constant. At the same time, the shape of the aerosol size distribution displays appreciable narrowing with decrease in volatility and bulk diffusivity and increase in rate constant. A proper representation of these physicochemical processes and parameters is needed in the next generation models to reliably predict not only the total SOA mass, but also its composition- and number-diameter distributions, all of which together determine the overall optical and cloud-nucleating properties

    Indirect radiative forcing by ion-mediated nucleation of aerosol

    Get PDF
    A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN) in generating new particles and cloud condensation nuclei (CCN) in the atmosphere. Here we implement the IMN scheme into the Community Atmosphere Model version 5 (CAM5). Our simulations show that, compared to globally averaged results based on H&lt;sub&gt;2&lt;/sub&gt;SO&lt;sub&gt;4&lt;/sub&gt;-H&lt;sub&gt;2&lt;/sub&gt;O binary homogeneous nucleation (BHN), the presence of ionization (i.e., IMN) halves H&lt;sub&gt;2&lt;/sub&gt;SO&lt;sub&gt;4&lt;/sub&gt; column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ~3, CCN burden by ~10% (at 0.2% supersaturation) to 65% (at 1.0% supersaturation), and cloud droplet number burden by ~18%. Compared to BHN, IMN increases cloud liquid water path by 7.5%, decreases precipitation by 1.1%, and increases total cloud cover by 1.9%. This leads to an increase of total shortwave cloud radiative forcing (SWCF) by 3.67 W m&lt;sup&gt;−2&lt;/sup&gt; (more negative) and longwave cloud forcing by 1.78 W m&lt;sup&gt;−2&lt;/sup&gt; (more positive), with large spatial variations. The effect of ionization on SWCF derived from this study (3.67 W m&lt;sup&gt;−2&lt;/sup&gt;) is a factor of ~3 higher that of a previous study (1.15 W m&lt;sup&gt;−2&lt;/sup&gt;) based on a different ion nucleation scheme and climate model. Based on the present CAM5 simulation, the 5-yr mean impacts of solar cycle induced changes in ionization rates on CCN and cloud forcing are small (~−0.02 W m&lt;sup&gt;−2&lt;/sup&gt;) but have larger inter-annual (from −0.18 to 0.17 W m&lt;sup&gt;−2&lt;/sup&gt;) and spatial variations

    Estimating carbon stock change in agroforestry and family forestry practices

    Get PDF
    Paper presented at the 11th North American Agroforesty Conference, which was held May 31-June 3, 2009 in Columbia, Missouri.In Gold, M.A. and M.M. Hall, eds. Agroforestry Comes of Age: Putting Science into Practice. Proceedings, 11th North American Agroforestry Conference, Columbia, Mo., May 31-June 3, 2009.The Carbon Management Evaluation Tool for Voluntary Reporting (COMET-VR) is an online tool that estimates short-term carbon stock (CS) changes under different farm or forest land management systems, including temperate agroforestry practices. It was developed by the USDA Natural Resources Conservation Service in conjunction with Colorado State University. The intended audience includes private farm and forest landowners, NRCS field staff, and technical service providers. Through the online interface, users identify their location, parcel size, surface soil texture, crop rotation history and tillage intensity. The user can choose either of two methods to estimate CS change for their agroforestry practice: 1) for new or future plantings, by using standard prescriptions common to their geographic region, or 2) for a more accurate estimate of an existing planting, by using a summary of live-tree stand inventory data collected from their parcel. Above and below-ground individual tree biomass is calculated using diameter-based allometric equations generalized for tree genera groups. For existing agroforestry plantings, growth estimates are based on empirical models developed from forest inventory data specific to species and region. For new or future plantings, growth estimates were derived for standard agroforestry prescriptions using the Forest Vegetation Simulator. COMET-VR uses the Century soil carbon model to estimate CS change in soil. The output of the tool is a report estimating CS changes over the forthcoming 10 years in the above and below-ground portions of live trees and in the soil. Although specifically designed to meet the requirements of the US Dept. of Energy voluntary greenhouse gas reporting program, COMET-VR may also be applicable to other private and public sector carbon offset programs.Miles L. Merwin (1), Mark Easter (2), Lyn R. Townsend (1), Roel C. Vining (1) and Greg L. Johnson (1) ; 1. USDA Natural Resources Conservation Service, 1201 NE Lloyd Blvd., Portland, OR 97232. 2. Natural Resource Ecology Laboratory, Colorado State University, Ft. Collins, CO.Includes bibliographical references

    Ultrasonographic-based predictive factors influencing successful return to racing after superficial digital flexor tendon injuries in flat racehorses: a retrospective cohort study in 469 Thoroughbred racehorses in Hong Kong

    Get PDF
    Background: Superficial digital flexor tendon (SDFT) injury is an important health and welfare concern in racehorses. It is generally diagnosed with ultrasonography, predictive ultrasonographic features have not been reported. Objectives: To determine ultrasonographic features of forelimb SDFT injury at initial presentation in Thoroughbred racehorses, that could predict a successful return to racing (completing > or = 5 races). Study Design: Retrospective cohort study. Methods: Digitised ultrasonographic images of 469 horses with forelimb SDFT injuries from the Hong Kong Jockey Club (2003-2014) were evaluated, using a previously validated ultrasonographic scoring system. Six ultrasonographic parameters were evaluated (type and extent of the injury, location, echogenicity, cross-sectional area and longitudinal fiber pattern of the maximal injury zone (MIZ)), as well as horse signalment, retirement date and number of races before and after injury. Data was analysed by generalized linear regression with significance at P<0.05. Results: Cases were divided in two groups: 1) For cases of SDFT tendonitis with core lesions, cross-sectional area at the MIZ was the most significant factor determining a successful return to racing (p=0.03). If the lesion was or > or = 50% this decreased to 11-16%. 2) For cases of SDFT tendonitis without a core lesion, longitudinal fiber pattern at the MIZ best predicted a successful return to racing (P=0.002); if the affected longitudinal fiber pattern was or = 75% this decreased to 14%. Main Limitations: Prognostic information may not be applicable to other breeds/disciplines. Conclusions: This is the first study to describe ultrasonographic features of forelimb SDFT injuries at initial presentation that were predictive of successful return to racing. The outcomes will assist with early, evidence-based decisions on prognosis in Thoroughbred racehorses

    WTEC panel report on European nuclear instrumentation and controls

    Get PDF
    Control and instrumentation systems might be called the 'brain' and 'senses' of a nuclear power plant. As such they become the key elements in the integrated operation of these plants. Recent developments in digital equipment have allowed a dramatic change in the design of these instrument and control (I&C) systems. New designs are evolving with cathode ray tube (CRT)-based control rooms, more automation, and better logical information for the human operators. As these new advanced systems are developed, various decisions must be made about the degree of automation and the human-to-machine interface. Different stages of the development of control automation and of advanced digital systems can be found in various countries. The purpose of this technology assessment is to make a comparative evaluation of the control and instrumentation systems that are being used for commercial nuclear power plants in Europe and the United States. This study is limited to pressurized water reactors (PWR's). Part of the evaluation includes comparisons with a previous similar study assessing Japanese technology
    corecore