1,386 research outputs found

    The dynamical distance and intrinsic structure of the globular cluster omega Centauri

    Get PDF
    We determine the dynamical distance D, inclination i, mass-to-light ratio M/L and the intrinsic orbital structure of the globular cluster omega Cen, by fitting axisymmetric dynamical models to the ground-based proper motions of van Leeuwen et al. and line-of-sight velocities from four independent data-sets. We correct the observed velocities for perspective rotation caused by the space motion of the cluster, and show that the residual solid-body rotation component in the proper motions can be taken out without any modelling other than assuming axisymmetry. This also provides a tight constraint on D tan i. Application of our axisymmetric implementation of Schwarzschild's orbit superposition method to omega Cen reveals no dynamical evidence for a significant radial dependence of M/L. The best-fit dynamical model has a stellar V-band mass-to-light ratio M/L_V = 2.5 +/- 0.1 M_sun/L_sun and an inclination i = 50 +/- 4 degrees, which corresponds to an average intrinsic axial ratio of 0.78 +/- 0.03. The best-fit dynamical distance D = 4.8 +/- 0.3 kpc (distance modulus 13.75 +/- 0.13 mag) is significantly larger than obtained by means of simple spherical or constant-anisotropy axisymmetric dynamical models, and is consistent with the canonical value 5.0 +/- 0.2 kpc obtained by photometric methods. The total mass of the cluster is (2.5 +/- 0.3) x 10^6 M_sun. The best-fit model is close to isotropic inside a radius of about 10 arcmin and becomes increasingly tangentially anisotropic in the outer region, which displays significant mean rotation. This phase-space structure may well be caused by the effects of the tidal field of the Milky Way. The cluster contains a separate disk-like component in the radial range between 1 and 3 arcmin, contributing about 4% to the total mass.Comment: 37 pages (23 figures), accepted for publication in A&A, abstract abridged, for PS and PDF file with full resolution figures, see http://www.strw.leidenuniv.nl/~vdven/oc

    Schwarzschild models of the Sculptor dSph galaxy

    Get PDF
    We have developed a spherically symmetric dynamical model of a dwarf spheroidal galaxy using the Schwarzschild method. This type of modelling yields constraints both on the total mass distribution (e.g. enclosed mass and scale radius) as well as on the orbital structure of the system modelled (e.g. velocity anisotropy). Therefore not only can we derive the dark matter content of these systems, but also explore possible formation scenarios. Here we present preliminary results for the Sculptor dSph. We find that the mass of Sculptor within 1kpc is 8.5\times10^(7\pm0.05) M\odot, its anisotropy profile is tangentially biased and slightly more isotropic near the center. For an NFW profile, the preferred concentration (~15) is compatible with cosmological models. Very cuspy density profiles (steeper than NFW) are strongly disfavoured for Sculptor.Comment: 2 pages, 4 figures, to appear in the proceedings of "Assembling the Puzzle of the Milky Way", Le Grand Bornand (Apr. 17-22, 2011

    The Population of Dark Matter Subhaloes: Mass Functions and Average Mass Loss Rates

    Full text link
    Using a cosmological N-Body simulation and a sample of re-simulated cluster-like haloes, we study the mass loss rates of dark matter subhaloes, and interpret the mass function of subhaloes at redshift zero in terms of the evolution of the mass function of systems accreted by the main halo progenitor. When expressed in terms of the ratio between the mass of the subhalo at the time of accretion and the present day host mass the unevolved subhalo mass function is found to be universal. However, the subhalo mass function at redshift zero clearly depends on M0M_0, in that more massive host haloes host more subhaloes. To relate the unevolved and evolved subhalo mass functions, we measure the subhalo mass loss rate as a function of host mass and redshift. We find that the average, specific mass loss rate of dark matter subhaloes depends mainly on redshift. These results suggest a pleasingly simple picture for the evolution and mass dependence of the evolved subhalo mass function. Less massive host haloes accrete their subhaloes earlier, which are thus subjected to mass loss for a longer time. In addition, their subhaloes are typically accreted by denser hosts, which causes an additional boost of the mass loss rate. To test the self-consistency of this picture, we use a merger trees constructed using the extended Press-Schechter formalism, and evolve the subhalo populations using the average mass loss rates obtained from our simulations, finding the subhalo mass functions to be in good agreement with the simulations. [abridged]Comment: 12 pages, 12 figures; submitted to MNRA

    Evidence for a massive BH in the S0 galaxy NGC 4342

    Get PDF
    We present axisymmetric dynamical models of the edge-on S0 galaxy NGC 4342. A combination of observations from the ground and with the Hubble Space Telescope (HST) has shown that NGC 4342 rotates rapidly and has a strong central increase in velocity dispersion. We construct simple two-integral Jeans models as well as fully general, three-integral models. The latter are built using a modified version of Schwarzschild's orbit-superposition technique. The two-integral Jeans models suggest a black hole (BH) mass between 3 and 6x10^8 Msun, depending on the data set used to constrain the model, but they fail to fit the details of the observed kinematics. The three-integral models can fit all ground-based and HST data simultaneously, but only when a central BH is included. Models without BH are ruled out to a confidence level better than 99.73 per cent. We determine a BH mass of 3x10^8 Msun. This corresponds to 2.6 per cent of the total mass of the bulge, making NGC 4342 one of the galaxies with the highest BH mass to bulge mass ratio currently known. The models that best fit the data do not have a two-integral phase-space distribution function. They have rather complex dynamical structures: the velocity anisotropies are strong functions of radius reflecting the multi-component structure of this galaxy. The best fit model without BH tries to fit the high central velocity dispersion by placing stars on radial orbits. The measured rotation velocities, however, restrict the amount of radial anisotropy such that the central velocity dispersion measured with the HST can only be fit when a massive BH is included in the models.Comment: 47 pages, 14 figures (postscript). Submitted to Ap

    Dynamical Modeling of SAURON Galaxies

    Full text link
    We describe our program for the dynamical modeling of early-type galaxies observed with the panoramic integral-field spectrograph SAURON. We are using Schwarzschild's numerical orbit superposition method to reproduce in detail all kinematical and photometric observables, and recover the intrinsic orbital structure of the galaxies. Since catastrophes are the most prominent features in the orbital observables, two-dimensional kinematical coverage is essential to constrain the dynamical models.Comment: 5 pages, 4 figures, LaTeX. Published in 2003, Carnegie Observatories Astrophysics Series, Vol. 1: Coevolution of Black Holes and Galaxies, ed. L. C. Ho (Pasadena: Carnegie Observatories, http://www.ociw.edu/ociw/symposia/series/symposium1/proceedings.html

    An Over-Massive Black Hole in the Compact Lenticular Galaxy NGC1277

    Get PDF
    All massive galaxies likely have supermassive black holes at their centers, and the masses of the black holes are known to correlate with properties of the host galaxy bulge component. Several explanations have been proposed for the existence of these locally-established empirical relationships; they include the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, or galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are thus important for distinguishing between various theoretical models of galaxy evolution, and they further form the basis for all black hole mass measurements at large distances. In particular, observations have shown that the mass of the black hole is typically 0.1% of the stellar bulge mass of the galaxy. The small galaxy NGC4486B currently has the largest published fraction of its mass in a black hole at 11%. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, disky galaxy with a mass of 1.2 x 10^11 Msun. From the data, we determine that the mass of the central black hole is 1.7 x 10^10 Msun, or 59% its bulge mass. Five other compact galaxies have properties similar to NGC 1277 and therefore may also contain over-sized black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the normal black hole mass scaling relations.Comment: 7 pages. 6 figures. Nature. Animation at http://www.mpia.de/~bosch/blackholes.htm

    Nuclear stellar discs in low-luminosity elliptical galaxies: NGC 4458 and NGC 4478

    Get PDF
    We present the detection of nuclear stellar discs in the low-luminosity elliptical galaxies NGC 4458 and NGC 4478, which are known to host a kinematically-decoupled core. Using archival HST imaging, and available absorption line-strength index data based on ground-based spectroscopy, we investigate the photometric parameters and the properties of the stellar populations of these central structures. Their scale length, h, and face-on central surface brightness, mu_0^c, fit on mu_0^c-h relation for galaxy discs. For NGC 4458 these parameters are typical for nuclear discs, while the same quantities for NGC 4478 lie between those of nuclear discs and the discs of discy ellipticals. We present Lick/IDS absorption line-strength measurements of Hbeta, Mgb, along the major and minor axes of the galaxies. We model these data with simple stellar populations that account for the alpha/Fe overabundance. The counter-rotating central disc of NGC 4458 is found to have similar properties to the decoupled cores of bright ellipticals. This galaxy has been found to be uniformly old despite being counter-rotating. In contrast, the cold central disc of NGC 4478 is younger, richer in metals and less overabundant than the main body of the galaxy. This points to a prolonged star formation history, typical of an undisturbed disc-like, gas-rich (possibly pre-enriched) structure.Comment: 11 pages, 8 figures, accepted for pubblication on MNRA

    Dwarf Galaxy Dark Matter Density Profiles Inferred from Stellar and Gas Kinematics

    Full text link
    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high resolution integral field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although 2/7 galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, gamma, are generally robust. The mean and standard deviation of the logarithmic slope for the population are gamma=0.67+/-0.10 when measured in the stars and gamma=0.58+/-0.24 when measured in the gas. We also find that the halos are not under concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. We investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. Determining the importance of these correlations will require further model developments and larger observational samples. (Abridged)Comment: 29 pages, 18 figures, 10 tables, accepted for publication in Ap

    Supermassive black holes from OASIS and SAURON integral-field kinematics

    Full text link
    Supermassive black holes are a key element in our understanding of how galaxies form. Most of the progress in this very active field of research is based on just ~30 determinations of black hole mass, accumulated over the past decade. We illustrate how integral-field spectroscopy, and in particular our OASIS modeling effort, can help improve the current situation.Comment: 4 pages, 2 figures, LaTeX. To appear in the proceedings of IAU Symposium 245 "Formation and Evolution of Galaxy Bulges", M. Bureau, E. Athanassoula, and B. Barbuy, ed

    Fast and Slow Rotators: The build-up of the Red Sequence

    Full text link
    Using the unique dataset obtained within the course of the SAURON project, a radically new view of the structure, dynamics and stellar populations of early-type galaxies has emerged. We show that galaxies come in two broad flavours (slow and fast rotators), depending on whether or not they exhibit clear large-scale rotation, as indicated via a robust measure of the specific angular momentum of baryons. This property is also linked with other physical characteristics of early-type galaxies, such as: the presence of dynamically decoupled cores, orbital structure and anisotropy, stellar populations and dark matter content. I here report on the observed link between this baryonic angular momentum and a mass sequence, and how this uniquely relates to the building of the red sequence via dissipative/dissipationless mergers and secular evolution.Comment: 4 pages, 1 figure. To appear in the Proceedings of IAU Symposium 245 "Formation and Evolution of Galaxy Bulges", Eds M. Bureau, E. Athanassoula, and B. Barbu
    corecore