4,556 research outputs found

    Contact-allergy time

    Get PDF
    The most commonly used techniques for the in vivo evaluation of the cellular immune response include intracutaneous testing with microbial recall antigens or sensitization with neoantigens. The reliability of these tests for the individual patient usually is low due to the lack of standardization and quantification. Moreover only the efferent branch of the immune response can be judged. The dinitrochlorobenzene-contact allergy time (DNCB-CAT) is a quantitative approach for the assessment of the cellular immune response. 2% DNCBointment is applied on the upper arm in a 1 cm2 area. On the following days patch-testing with 0.05% DNCB-ointment is done on the homolateral forearm in alternating localizations till an allergic contact dermatitis reaction appears. As assessed in patients with malignant melanoma (MM, n=\\5) and with lymphoproliferative disorders (LD, η = 25), the DNCB-CAT correlates with the age of the patients and can be expressed by a formula given by the age (years) χ factor (MM = 0.16; LD = 0.17) + constant figure (MM = 5.5; LD = 4.3). There was no significant difference between the two groups or subgroups investigated. By DNCB-CAT quantitative analysis of the cellular immune response in vivo is possible. It is an appropriate model for further investigations of the cellular immunity under different clinical, histological, prognostic, and therapeutic aspects

    A FIRST DETERMINATION OF THE SURFACE DENSITY OF GALAXY CLUSTERS AT VERY LOW X--RAY FLUXES

    Get PDF
    We present the first results of a serendipitous search for clusters of galaxies in deep ROSAT-PSPC pointed observations at high galactic latitude. The survey is being carried out using a Wavelet based Detection Algorithm which is not biased against extended, low surface brightness sources. A new flux--diameter limited sample of 10 cluster candidates has been created from ∌3 deg2\rm\sim 3 \, deg^2 surveyed area. Preliminary CCD observations have revealed that a large fraction of these candidates correspond to a visible enhancement in the galaxy surface density, and several others have been identified from other surveys. We believe these sources to be either low--moderate redshift groups or intermediate to high redshift clusters. We show X-ray and optical images of some of the clusters identified to date. We present, for the first time, the derived number density of the galaxy clusters to a flux limit of 1⋅10−14ergcm−2s−1\rm 1\cdot 10^{-14} erg cm^{-2} s^{-1} (0.5--2.0 keV). This extends the log⁥N\log N--log⁥S\log S of previous cluster surveys by more than one decade in flux. Results are compared to theoretical predictions for cluster number counts.Comment: uuencoded compressed Postscript, 7 pages including 4 figures. Accepted for publication in Ap. J. Letters

    The hot gas content of fossil galaxy clusters

    Full text link
    We investigate the properties of the hot gas in four fossil galaxy systems detected at high significance in the Planck Sunyaev-Zeldovich (SZ) survey. XMM-Newton observations reveal overall temperatures of kT ~ 5-6 keV and yield hydrostatic masses M500,HE > 3.5 x 10e14 Msun, confirming their nature as bona fide massive clusters. We measure the thermodynamic properties of the hot gas in X-rays (out to beyond R500 in three cases) and derive their individual pressure profiles out to R ~ 2.5 R500 with the SZ data. We combine the X-ray and SZ data to measure hydrostatic mass profiles and to examine the hot gas content and its radial distribution. The average Navarro-Frenk-White (NFW) concentration parameter, c500 = 3.2 +/- 0.4, is the same as that of relaxed `normal' clusters. The gas mass fraction profiles exhibit striking variation in the inner regions, but converge to approximately the cosmic baryon fraction (corrected for depletion) at R500. Beyond R500 the gas mass fraction profiles again diverge, which we interpret as being due to a difference in gas clumping and/or a breakdown of hydrostatic equilibrium in the external regions. Overall our observations point to considerable radial variation in the hot gas content and in the gas clumping and/or hydrostatic equilibrium properties in these fossil clusters, at odds with the interpretation of their being old, evolved and undisturbed. At least some fossil objects appear to be dynamically young.Comment: 4 pages, 2 figures. Accepted for publication in A&

    Spatial Multiplexing of QPSK Signals with a Single Radio: Antenna Design and Over-the-Air Experiments

    Full text link
    The paper describes the implementation and performance analysis of the first fully-operational beam-space MIMO antenna for the spatial multiplexing of two QPSK streams. The antenna is composed of a planar three-port radiator with two varactor diodes terminating the passive ports. Pattern reconfiguration is used to encode the MIMO information onto orthogonal virtual basis patterns in the far-field. A measurement campaign was conducted to compare the performance of the beam-space MIMO system with a conventional 2-by-?2 MIMO system under realistic propagation conditions. Propagation measurements were conducted for both systems and the mutual information and symbol error rates were estimated from Monte-Carlo simulations over the measured channel matrices. The results show the beam-space MIMO system and the conventional MIMO system exhibit similar finite-constellation capacity and error performance in NLOS scenarios when there is sufficient scattering in the channel. In comparison, in LOS channels, the capacity performance is observed to depend on the relative polarization of the receiving antennas.Comment: 31 pages, 23 figure

    Large-scale integration of single-walled carbon nanotubes and graphene into sensors and devices using dielectrophoresis: A review

    Get PDF
    Device and sensor miniaturization has enabled extraordinary functionality and sensitivity enhancements over the last decades while considerably reducing fabrication costs and energy consumption. The traditional materials and process technologies used today will, however, ultimately run into fundamental limitations. Combining large-scale directed assembly methods with high-symmetry low-dimensional carbon nanomaterials is expected to contribute toward overcoming shortcomings of traditional process technologies and pave the way for commercially viable device nanofabrication. The purpose of this article is to review the guided dielectrophoretic integration of individual single-walled carbon nanotube (SWNT)- and graphene-based devices and sensors targeting continuous miniaturization. The review begins by introducing the electrokinetic framework of the dielectrophoretic deposition process, then discusses the importance of high-quality solutions, followed by the site- and type-selective integration of SWNTs and graphene with emphasis on experimental methods, and concludes with an overview of dielectrophoretically assembled devices and sensors to date. The field of dielectrophoretic device integration is filled with opportunities to research emerging materials, bottom-up integration processes, and promising applications. The ultimate goal is to fabricate ultra-small functional devices at high throughput and low costs, which require only minute operation powe

    Pericardial Cyst: Unexpected Finding on a Chest Radiograph

    Get PDF
    <p>[West J Emerg Med. 2011;12(4):579–580.]</p

    Continuous Diaphragm Sign

    Get PDF
    <p>[West J Emerg Med. 2011;12(4):526–527.]</p

    A skewer survey of the Galactic halo from deep CFHT and INT images

    Get PDF
    We study the density profile and shape of the Galactic halo using deep multicolour images from the MENeaCS and CCCP projects, over 33 fields selected to avoid overlap with the Galactic plane. Using multicolour selection and PSF homogenization techniques we obtain catalogues of F stars (near-main sequence turnoff stars) out to Galactocentric distances up to 60kpc. Grouping nearby lines of sight, we construct the stellar density profiles through the halo in eight different directions by means of photometric parallaxes. Smooth halo models are then fitted to these profiles. We find clear evidence for a steepening of the density profile power law index around R=20 kpc, from -2.50 +- 0.04 to -4.85 +- 0.04, and for a flattening of the halo towards the poles with best-fit axis ratio 0.63 +- 0.02. Furthermore, we cannot rule out a mild triaxiality (w>=0.8). We recover the signatures of well-known substructure and streams that intersect our lines of sight. These results are consistent with those derived from wider but shallower surveys, and augur well for upcoming, wide-field surveys of comparable depth to our pencil beam surveys.Comment: 14 pages, 8 figures, 6 table

    The dynamics of z~1 clusters of galaxies from the GCLASS survey

    Get PDF
    We constrain the internal dynamics of a stack of 10 clusters from the GCLASS survey at 0.87<z<1.34. We determine the stack cluster mass profile M(r) using the MAMPOSSt algorithm of Mamon et al., the velocity anisotropy profile beta(r) from the inversion of the Jeans equation, and the pseudo-phase-space density profiles Q(r) and Qr(r), obtained from the ratio between the mass density profile and the third power of the (total and, respectively, radial) velocity dispersion profiles of cluster galaxies. Several M(r) models are statistically acceptable for the stack cluster (Burkert, Einasto, Hernquist, NFW). The total mass distribution has a concentration c=r200/r-2=4.0-0.6+1.0, in agreement with theoretical expectations, and is less concentrated than the cluster stellar-mass distribution. The stack cluster beta(r) is similar for passive and star-forming galaxies and indicates isotropic galaxy orbits near the cluster center and increasingly radially elongated with increasing cluster-centric distance. Q(r) and Qr(r) are almost power-law relations with slopes similar to those predicted from numerical simulations of dark matter halos. Combined with results obtained for lower-z clusters we determine the dynamical evolution of galaxy clusters, and compare it with theoretical predictions. We discuss possible physical mechanisms responsible for the differential evolution of total and stellar mass concentrations, and of passive and star-forming galaxy orbits [abridged].Comment: 12 pages, 7 figures. Version accepted for publication in A&A after minor modification
    • 

    corecore