9,466 research outputs found
Infrared Exponents and the Running Coupling of Landau gauge QCD and their Relation to Confinement
The infrared behaviour of the gluon and ghost propagators in Landau gauge QCD
is reviewed. The Kugo-Ojima confinement criterion and the Gribov-Zwanziger
horizon condition result from quite general properties of the ghost
Dyson-Schwinger equation. The numerical solutions for the gluon and ghost
propagators obtained from a truncated set of Dyson-Schwinger equations provide
an explicit example for the anticipated infrared behaviour. The results are in
good agreement with corresponding lattice data obtained recently. The resulting
running coupling approaches a fix point in the infrared, . Two different fits for the scale dependence of the running coupling
are given and discussed.Comment: 3 pages, 3 figures; talk given by R.A. at the conference Quark
Nuclear Physics 200
False‑positive technetium‑99m methylene diphosphonate bone scan activity in the orbit in a patient with a history of breast carcinoma
Metastasis of breast carcinoma to the orbit is an uncommon entity and carries a poor prognosis. This case report presents false-positive technetium-99m methylene diphosphonate activity in the right orbit of a patient with a history of a primary breast neoplasm. Orbital computed tomography imaging was obtained to further characterize the radiotracer uptake identified on the bone scan and demonstrated diffuse right globe intraocular calcifications secondary to degenerative intraocular changes. A brief literature review of orbital metastasis from breast carcinoma and causes of intraocular calcification in the context of chronic vision loss are provided
Improved Smoothing Algorithms for Lattice Gauge Theory
The relative smoothing rates of various gauge field smoothing algorithms are
investigated on -improved \suthree Yang--Mills gauge field
configurations. In particular, an -improved version of APE
smearing is motivated by considerations of smeared link projection and cooling.
The extent to which the established benefits of improved cooling carry over to
improved smearing is critically examined. We consider representative gauge
field configurations generated with an -improved gauge field
action on \1 lattices at and \2 lattices at
having lattice spacings of 0.165(2) fm and 0.077(1) fm respectively. While the
merits of improved algorithms are clearly displayed for the coarse lattice
spacing, the fine lattice results put the various algorithms on a more equal
footing and allow a quantitative calibration of the smoothing rates for the
various algorithms. We find the relative rate of variation in the action may be
succinctly described in terms of simple calibration formulae which accurately
describe the relative smoothness of the gauge field configurations at a
microscopic level
Kugo-Ojima confinement and QCD Green's functions in covariant gauges
In Landau gauge QCD the Kugo-Ojima confinement criterion and its relation to
the infrared behaviour of the gluon and ghost propagators are reviewed. It is
demonstrated that the realization of this confinement criterion (which is
closely related to the Gribov-Zwanziger horizon condition) results from quite
general properties of the ghost Dyson-Schwinger equation. The numerical
solutions for the gluon and ghost propagators obtained from a truncated set of
Dyson--Schwinger equations provide an explicit example for the anticipated
infrared behaviour. The results are in good agreement, also quantitatively,
with corresponding lattice data obtained recently. The resulting running
coupling approaches a fixed point in the infrared, .
Solutions for the coupled system of Dyson--Schwinger equations for the quark,
gluon and ghost propagators are presented. Dynamical generation of quark masses
and thus spontaneous breaking of chiral symmetry takes place. In the quenched
approximation the quark propagator functions agree well with those of
corresponding lattice calculations. For a small number of light flavours the
quark, gluon and ghost propagators deviate only slightly from the ones in
quenched approximation. While the positivity violation of the gluon spectral
function is manifest in the gluon propagator, there are no clear indications of
analogous positivity violations for quarks so far.Comment: 10 pages, 5 figures; Talk given by R.A. at the International School
on Nuclear Physics ``Quarks in Hadrons and Nuclei'' in Erice (Italy),
September 16 - 24, 200
Break-up fragments excitation and the freeze-out volume
We investigate, in microcanonical multifragmentation models, the influence of
the amount of energy dissipated in break-up fragments excitation on freeze-out
volume determination. Assuming a limiting temperature decreasing with nuclear
mass, we obtain for the Xe+Sn at 32 MeV/nucleon reaction [J. D. Frankland et
al., Nucl. Phys. A689, 905 (2001); A689, 940 (2001)] a freeze-out volume almost
half the one deduced using a constant limiting temperature.Comment: 11 pages, 6 figure
Scaling behavior of the overlap quark propagator in Landau gauge
The properties of the momentum space quark propagator in Landau gauge are
examined for the overlap quark action in quenched lattice QCD. Numerical
calculations are done on three lattices with different lattice spacings and
similar physical volumes to explore the approach of the quark propagator toward
the continuum limit. We have calculated the nonperturbative momentum-dependent
wave function renormalization function Z(p) and the nonperturbative mass
function M(p) for a variety of bare quark masses and perform an extrapolation
to the chiral limit. We find the behavior of Z(p) and M(p) are in reasonable
agreement between the two finer lattices in the chiral limit, however the data
suggest that an even finer lattice is desirable. The large momentum behavior is
examined to determine the quark condensate.Comment: 9 pages, 5 figures, Revtex 4. Streamlined presentation, additional
data. Final versio
Infrared Exponents and Running Coupling of SU(N) Yang-Mills Theories
We present approximate solutions for the gluon and ghost propagators as well
as the running coupling in Landau gauge Yang-Mills theories. We solve the
corresponding Dyson-Schwinger equations in flat Euclidean space-time without
any angular approximation. This supplements recently obtained results employing
a four-torus, i.e. a compact space-time manifold, as infrared regulator. We
confirm previous findings deduced from an extrapolation with tori of different
volumes: the gluon propagator is weakly vanishing in the infrared and the ghost
propagator is highly singular. For non-vanishing momenta our propagators are in
remarkable agreement with recent lattice calculations.Comment: 11 pages, 4 figure
Scaling Behavior of the Landau Gauge Overlap Quark Propagator
The properties of the momentum space quark propagator in Landau gauge are
examined for the overlap quark action in quenched lattice QCD. Numerical
calculations are done on three lattices with different lattice spacings and
similar physical volumes to explore the approach of the quark propagator
towards the continuum limit. We have calculated the nonperturbative
momentum-dependent wavefunction renormalization function and the
nonperturbative mass function for a variety of bare quark masses and
extrapolate to the chiral limit.
We find the behavior of and are in good agreement for the
two finer lattices in the chiral limit. The quark condensate is also
calculated.Comment: 3 pages, Lattice2003(Chiral fermions
Gluons, quarks, and the transition from nonperturbative to perturbative QCD
Lattice-based investigations of two fundamental QCD quantities are described,
namely the gluon and quark propagators in Landau gauge. We have studied the
Landau gauge gluon propagator using a variety of lattices with spacings from a
= 0.17 to 0.41 fm. We demonstrate that it is possible to obtain scaling
behavior over a very wide range of momenta and lattice spacings and to explore
the infinite volume and continuum limits. These results confirm that the Landau
gauge gluon propagator is infrared finite. We study the Landau gauge quark
propagator in quenched QCD using two forms of the O(a)-improved propagator and
we find good agreement between these. The extracted value of the infrared quark
mass in the chiral limit is found to be 300 +/- 30 MeV. We conclude that the
momentum regime where the transition from nonperturbative to perturbative QCD
occurs is Q^2 approx 4GeV^2.Comment: 8 pages, 6 figures, 1 table. Talk presented by AGW at the Workshop on
Lepton Scattering, Hadrons and QCD, March 26-April 5, 2001, CSSM, Adelaide,
Australia. To appear in the proceeding
Pseudo-critical clusterization in nuclear multifragmentation
In this contribution we show that the biggest fragment charge distribution in
central collisions of Xe+Sn leading to multifragmentation is an admixture of
two asymptotic distributions observed for the lowest and highest bombarding
energies. The evolution of the relative weights of the two components with
bombarding energy is shown to be analogous to that observed as a function of
time for the largest cluster produced in irreversible aggregation for a finite
system. We infer that the size distribution of the largest fragment in nuclear
multifragmentation is also characteristic of the time scale of the process,
which is largely determined by the onset of radial expansion in this energy
range.Comment: 4 pages, 3 figures, Contribution to conference proceedings of the
25th International Nuclear Physics Conference (INPC 2013
- …
