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Lattice-based investigations of two fundamental QCD quantities are described,
namely the gluon and quark propagators in Landau gauge. We have studied the
Landau gauge gluon propagator using a variety of lattices with spacings from
a = 0.17 to 0.41 fm to explore finite volume and discretization effects. We also
introduce the general method of “tree-level correction” to minimize the effect of lat-
tice artefacts at large momenta. We demonstrate that it is possible to obtain scaling
behavior over a very wide range of momenta and lattice spacings and to explore
the infinite volume and continuum limits of the Landau-gauge gluon propagator.
These results confirm the earlier conclusion that the Landau gauge gluon propa-
gator is infrared finite. We study the Landau gauge quark propagator in quenched
QCD using two forms of the O(a)-improved propagator with the Sheikholeslami-
Wohlert quark action with the nonperturbative value for the clover coefficient csw
and mean-field improvement coefficients in our improved quark propagators. We
again implement an appropriate form of tree-level correction. We find good agree-
ment between our improved quark propagators. The extracted value of infrared
quark mass in the chiral limit is found to be 300 ± 30 MeV. We conclude that
the momentum regime where the transition from nonperturbative to perturbative
QCD occurs is Q2 ≃ 4 GeV2.

1 Introduction

Lattice gauge theory is currently the only known “first principles” approach to
studying nonperturbative QCD. It is therefore important for lattice QCD to
provide constraints and guidance for the construction of quark-based models1

and to provide an indication of the momentum regime at which we can expect
perturbative QCD to become applicable. The quark and gluon propagators are
two of the most fundamental quantities in QCD. There has been considerable
interest in the infrared behavior of the gluon propagator as a probe into the
mechanism of confinement and by studying the scalar part of the quark prop-
agator, the mass function, we can gain insight into the mechanisms of chiral
symmetry breaking. Both are used as input for other quark-model calculations.
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Dimensions β a (fm) Volume (fm4) Configurations
1w 163 × 32 5.70 0.179 2.873 × 5.73 100
1i 163 × 32 4.38 0.166 2.643 × 5.28 100
2 103 × 20 3.92 0.353 3.533 × 7.06 100
3 83 × 16 3.75 0.413 3.303 × 6.60 100
4 163 × 32 3.92 0.353 5.653 × 11.30 100
5 123 × 24 4.10 0.270 3.243 × 6.48 100
6 323 × 64 6.00 0.099 3.183 × 6.34 75

Table 1: Details of the lattices used to calculate the gluon propagator. Lattices 1w and 1i
have the same dimensions and approximately the same lattice spacing, but were generated
with the Wilson and improved actions respectively. Lattice 6 was generated with the Wilson
action.

2 Gluon Propagator

We use an O(a2) tree-level, tadpole-improved action2 and for the tadpole
(mean-field) improvement parameter we use the plaquette measure3. A full
description and discussion of the gluon propagator results summarized here
can be found elsewhere.4,5,6

Gauge fixing on the lattice is achieved by maximizing a functional, the
extremum of which implies the gauge fixing condition. The usual Landau
gauge fixing functional implies that

∑

µ ∂µAµ = 0 up to O(a2). To ensure

that gauge dependent quantities are also O(a2) improved, we implement the
analogous O(a2) improved gauge fixing.4 The dimensionless lattice gluon field
Aµ(x) is calculated from the link variables in the usual way, which agrees with
the continuum to O(a2). We then calculate the scalar part of the propagator

D(x − y) =
∑

µ

〈Aµ(y)Aµ(x)〉 . (1)

To isolate the nonperturbative behavior of the gluon propagator, we can divide
the propagator by its lattice tree level form (i.e., that of lattice perturbation
theory).5 For the momentum space gluon propagator D(q2), we see that in the
continuum q2D(q2) will approach a constant up to logarithmic corrections as
q2 → ∞ because of asymptotic freedom. The continuum tree-level propagator
is 1/q2. We also expect asymptotic freedom on the lattice despite finite lattice
spacing artefacts. We define the lattice qµ such that the lattice Dtree(q) ≡ 1/q2,
and use this momentum throughout. This is referred to as tree-level correction
and we have seen that it significantly reduces discretization arrors at large
momenta. For the two actions considered here, this means that we work with
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the momentum variables defined as

qW
µ ≡

2

a
sin

q̂µa

2
, qI

µ ≡
2

a

√

sin2

( q̂µa

2

)

+
1

3
sin4

( q̂µa

2

)

, (2)

for the Wilson and improved actions respectively. All figures (quark and gluon
propagators) have a cylinder cut imposed upon them, i.e. all momenta must
lie close to the lattice diagonal. In Table 1 we show the various lattices that
we have studied for the gluon propagator. In Fig. 1 we plot q2D(q2) for a fine
unimproved Wilson action and for our finest improved action. Despite having
very different lattice spacings the agreement is excellent for the entire interme-
diate and high-momentum regime. The small discrepancy in the deep infrared
due to finite volume effects is not apparent in this way of plotting that data.
We plot D(q2) for five different lattice in Fig. 2 and see pleasing agreement for
the results. Note that we are plotting bare quantities only and there is thus an
overall wavefunction renormalization for the gluon propagator (i.e., Z3(µ, a)
for the renomalization point µ). The vertical scale is thus unimportant and
only the variation with momentum is relevant. This way of presenting the
data shows that there is a small residual finite volume dependence, where the
infrared gluon propagator is decreasing with increasing lattice volume V . We
have performed a fit as a function of 1/V and have seen that the large vol-
ume β = 3.92 lattice gives results which are very close to the infinite volume
limit. In Fig. 3 we plot D(q2) in the intermediate and ultraviolet regime and
compare with the three-loop perturbative QCD form. We see that the above
q ∼ 2 GeV the agreement is excellent, but that below this momentum scale
nonperturbative effects are becoming apparent.

3 Quark Propagator

The Landau gauge quark propagator results summarized here have been pre-
sented and discussed in more detail elsewhere.10 All O(a) errors in the fermion
action can be removed by adding appropriate terms to the Lagrangian7,8. It is
then usual to perform appropriate field transformations to improve the quark
operators as well.9

In the continuum, the quark propagator has the following general form,

S(p) =
1

i 6pAc(p) + Bc(p)
≡

Zc(p)

i 6p + M c(p)
. (3)

We expect the lattice quark propagator to have a similar form, but with 6 k
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Figure 1: Comparison of the gluon propagator from the finest improved lattice (lattice
1i, β = 4.38) and the finest Wilson lattice (lattice 6, β = 6.0). Data has been cylin-
der cut and the appropriate tree-level corrections have been applied. The data from lat-
tice 6 is half-cut whereas lattice 1i displays the full Brillouin zone. We have determined
Z3(improved)/Z3(Wilson) = 1.08 by matching the vertical scales of the data.

replacing 6p:

S(p) =
Z(p)

i 6k + M(p)
(4)

where k is a new ‘lattice momentum’, kµ = 1

a
sin(p̂µa). We do not have

sufficient space here to describe the hybrid tree-level correction that was used
for the quark propagator results presented here, but a detailed description
has recently been given.10 We again use the cylinder cut to further reduce
hypercubic discretization artefacts. As for the gluon propagator the results
for Z(p) are for the bare quantity only and contain an overall renormalization
constant Z2(µ, a). In Fig. 4 the vertical scales have been adjusted so that
the two sets of results are renormalized and hence coincide at 2.1 GeV. In
this figure we see the charactreistic dip in the infrared for Z(p), which occurs
also in model Dyson-Schwinger equation studies1 of dynamical chiral symmetry
breaking. This dip has essentially disappeared by around 2 GeV. The improved
action correspondning to SR is the one we prefer and it gives the more expected
ultraviolet behavior of the renormalized Z(p), i.e., it tends towards a constant.
In Fig. 5 we see the characteristic behavior of the quark mass function familiar
from quark model studies1 and that the transition to the perturbative regime
is occuring at approximately 2 GeV. Note that there is no renormalization of
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Figure 2: Comparison of the gluon propagator generated with an improved action on five
different lattices. We find good agreement down to q ≃ 500 MeV. At the lowest accessible
momenta the data points drop monotonically with increasing volume, but the lowest point
(on the largest lattice) shows signs of having converged to its infinite volume value. For
comparison with perturbation theory, a plot of the continuum, tree-level gluon propagator
(i.e., 1/q2 appropriately scaled) has been included.

the quark mass function. At large momenta the mass function should become
the running quark mass of perturbative QCD. Finally in Fig. 6 we present a
simple quadratic extrapolation to the chiral limit for the available SI data. The
slight dip is not statistically significant and is almost certainly a residual lattice
artefact. The infrared mass (i.e., at p = 0) in the chiral limit is approximately
330 ± 30 MeV, which is characteristic of the constituent quark mass scale.

4 Summary and Conclusions

The gluon propagator has been calculated on fine unimproved lattices and
on a variety of improved lattices with an O(a2) improved action in O(a2)
improved Landau gauge. The infrared behavior of this propagator strongly
suggests the the Landau gauge gluon propagator is infrared finite. We have
ruled out the 1/q4 behavior popular in some Dyson-Schwinger quark model
studies1 and indeed any infrared singularity appears to be very unlikely. The
possible effects of lattice Gribov copies remains a very interesting question
and we are currently carrying out similar studies across a variety of lattices
in Laplacian gauge, which is a Landau-like smooth gauge fixing, but is free of
Gribov copies.
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Figure 3: Comparison of the lattice gluon propagator with that obtained from perturbation
theory, in the ultraviolet to intermediate regime. The continuum expressions are tree-level
(i.e., 1/q2 appropriately scaled) and the three-loop perturbative QCD expression.

We have used two different definitions of the O(a) improved quark propa-
gator, corresponding to the quark propagators denoted SI and SR. We make
use of asymptotic freedom to factor out the tree level behaviour, replacing it
with the ‘continuum’ tree level behaviour Z(p) = 1, M(p) = m. This tree-level
correction dramatically improves the data. We find that M(0) approaches a
value of 300 ± 30 MeV in the chiral limit, which is very much in keeping with
the concept of a “constituent quark mass” and agrees with the infrared values
of the quark mass commonly used in model studies.1 We also find a significant
dip in the value for Z(p) at low momenta. This is again entirely consistent
with what is found in model studies of dynamical chiral symmetry breaking
1. An examination of Figs. 1, 3, 4, 5, and 6 provide a clear indication that
perturbative QCD behavior is not becoming dominant in the gluon and quark
propagators until we reach momenta of order Q2 ≃ 4 GeV2.
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Figure 4: The tree-level corrected Z(p) for csw = NP and κ = 0.137. The figure shows Z(p)
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Figure 5: The tree-level corrected M(p), for csw = NP, using SI (left) and SR (right).
We find good agreement between the two data sets, both in the infrared and ultraviolet.
The residual disagreement at intermediate momenta is a pointer to lattice artifacts that we
have not brought under full control, even with nonperturbative improvement and tree-level
correction.

Figure 6: The tree-level corrected mass function from SI with csw = NP, with the bare mass
extrapolated to zero using a quadratic fit. The small dip at p ∼ 1.6 GeV is not statistically
significant and may be due to residual lattice artifacts. The non-zero values for M(p) in
the chiral limit are entirely due to dynamical chiral symmetry breaking and provide a direct
measure of this effect.
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