2,262 research outputs found
Technology for large-scale translation of clinical practice guidelines : a pilot study of the performance of a hybrid human and computer-assisted approach
Background: The construction of EBMPracticeNet, a national electronic point-of-care information platform in Belgium, was initiated in 2011 to optimize quality of care by promoting evidence-based decision-making. The project involved, among other tasks, the translation of 940 EBM Guidelines of Duodecim Medical Publications from English into Dutch and French. Considering the scale of the translation process, it was decided to make use of computer-aided translation performed by certificated translators with limited expertise in medical translation. Our consortium used a hybrid approach, involving a human translator supported by a translation memory (using SDL Trados Studio), terminology recognition (using SDL Multiterm termbases) from medical termbases and support from online machine translation. This has resulted in a validated translation memory which is now in use for the translation of new and updated guidelines.
Objective: The objective of this study was to evaluate the performance of the hybrid human and computer-assisted approach in comparison with translation unsupported by translation memory and terminology recognition. A comparison was also made with the translation efficiency of an expert medical translator.
Methods: We conducted a pilot trial in which two sets of 30 new and 30 updated guidelines were randomized to one of three groups. Comparable guidelines were translated (a) by certificated junior translators without medical specialization using the hybrid method (b) by an experienced medical translator without this support and (c) by the same junior translators without the support of the validated translation memory. A medical proofreader who was blinded for the translation procedure, evaluated the translated guidelines for acceptability and adequacy. Translation speed was measured by recording translation and post-editing time. The Human Translation Edit Rate was calculated as a metric to evaluate the quality of the translation. A further evaluation was made of translation acceptability and adequacy.
Results: The average number of words per guideline was 1,195 and the mean total translation time was 100.2 min/1,000 words. No meaningful differences were found in the translation speed for new guidelines. The translation of updated guidelines was 59 min/1,000 words faster (95% CI 2-115; P=.044) in the computer-aided group. Revisions due to terminology accounted for one third of the overall revisions by the medical proofreader.
Conclusions: Use of the hybrid human and computer-aided translation by a non-expert translator makes the translation of updates of clinical practice guidelines faster and cheaper because of the benefits of translation memory. For the translation of new guidelines there was no apparent benefit in comparison with the efficiency of translation unsupported by translation memory (whether by an expert or non-expert translator
Secondary structure of Ac-Ala-LysH polyalanine peptides (=5,10,15) in vacuo: Helical or not?
The polyalanine-based peptide series Ac-Ala_n-LysH+ (n=5-20) is a prime
example that a secondary structure motif which is well-known from the solution
phase (here: helices) can be formed in vacuo. We here revisit this conclusion
for n=5,10,15, using density-functional theory (van der Waals corrected
generalized gradient approximation), and gas-phase infrared vibrational
spectroscopy. For the longer molecules (n=10,15) \alpha-helical models provide
good qualitative agreement (theory vs. experiment) already in the harmonic
approximation. For n=5, the lowest energy conformer is not a simple helix, but
competes closely with \alpha-helical motifs at 300K. Close agreement between
infrared spectra from experiment and ab initio molecular dynamics (including
anharmonic effects) supports our findings.Comment: 4 pages, 4 figures, Submitted to JPC Letter
Prediction of the Atomization Energy of Molecules Using Coulomb Matrix and Atomic Composition in a Bayesian Regularized Neural Networks
Exact calculation of electronic properties of molecules is a fundamental step
for intelligent and rational compounds and materials design. The intrinsically
graph-like and non-vectorial nature of molecular data generates a unique and
challenging machine learning problem. In this paper we embrace a learning from
scratch approach where the quantum mechanical electronic properties of
molecules are predicted directly from the raw molecular geometry, similar to
some recent works. But, unlike these previous endeavors, our study suggests a
benefit from combining molecular geometry embedded in the Coulomb matrix with
the atomic composition of molecules. Using the new combined features in a
Bayesian regularized neural networks, our results improve well-known results
from the literature on the QM7 dataset from a mean absolute error of 3.51
kcal/mol down to 3.0 kcal/mol.Comment: Under review ICANN 201
Emerging Pharmacotherapy for Relapsed or Refractory Hodgkin’s Lymphoma: Focus on Brentuximab Vedotin
Hodgkins’ lymphoma (HL) which has relapsed post or is refractory to autologous bone marrow transplant presents an ongoing treatment challenge. Development of monoclonal antibodies (mAb) for the treatment of HL has aimed to replicate the success of mAb therapy in the treatment on Non Hodgkins Lymphoma. The identification of CD30 as a potential target for treatment has led to the development of a new antibody-drug conjugate, brentuximab vedotin (SGN-35), which conjugates monomethyl auristatin E to an anti-CD30 antibody to deliver targeted toxicity to the malignant Reed Sternberg cells of HL. This review describes CD30 as an antibody target, and focuses on the antibody-drug conjugate brentuximab vedotin, including current knowledge of the mechanism of action, preclinical, clinical and pharmacokinetic data available for Brentuximab Vedotin
A "Square-root" Method for the Density Matrix and its Applications to Lindblad Operators
The evolution of open systems, subject to both Hamiltonian and dissipative
forces, is studied by writing the element of the time () dependent
density matrix in the form \ber \rho_{nm}(t)&=& \frac {1}{A} \sum_{\alpha=1}^A
\gamma ^{\alpha}_n (t)\gamma^{\alpha *}_m (t) \enr The so called "square root
factors", the 's, are non-square matrices and are averaged over
systems () of the ensemble. This square-root description is exact.
Evolution equations are then postulated for the factors, such as to
reduce to the Lindblad-type evolution equations for the diagonal terms in the
density matrix. For the off-diagonal terms they differ from the
Lindblad-equations. The "square root factors" are not unique and
the equations for the 's depend on the specific representation
chosen. Two criteria can be suggested for fixing the choice of 's
one is simplicity of the resulting equations and the other has to do with the
reduction of the difference between the formalism and the
Lindblad-equations.Comment: 36 pages, 7 figure
Underlining some limitations of the statistical formalism in quantum mechanics
We show that two chosen ensembles of spin states, which are differently
prepared but are described by the same density matrix in quantum mechanics, do
not fully share the same measurable characteristics. One characteristic on
which they differ is shown to be the variance of the spin along a given
direction. We conclude that the statistical description of an ensemble of
states as given by its density matrix, although sufficient in many cases,
should be considered incomplete, as it does not fully describe the measurable
characteristics of the ensemble. A discussion a posteriori on the problem is
provided
On Quantum State Observability and Measurement
We consider the problem of determining the state of a quantum system given
one or more readings of the expectation value of an observable. The system is
assumed to be a finite dimensional quantum control system for which we can
influence the dynamics by generating all the unitary evolutions in a Lie group.
We investigate to what extent, by an appropriate sequence of evolutions and
measurements, we can obtain information on the initial state of the system. We
present a system theoretic viewpoint of this problem in that we study the {\it
observability} of the system. In this context, we characterize the equivalence
classes of indistinguishable states and propose algorithms for state
identification
Phase-space theory for dispersive detectors of superconducting qubits
Motivated by recent experiments, we study the dynamics of a qubit
quadratically coupled to its detector, a damped harmonic oscillator. We use a
complex-environment approach, explicitly describing the dynamics of the qubit
and the oscillator by means of their full Floquet state master equations in
phase-space. We investigate the backaction of the environment on the measured
qubit and explore several measurement protocols, which include a long-term full
read-out cycle as well as schemes based on short time transfer of information
between qubit and oscillator. We also show that the pointer becomes measurable
before all information in the qubit has been lost.Comment: 15 pages, 8 figure
Spin dynamics of Mn12-acetate in the thermally-activated tunneling regime: ac-susceptibility and magnetization relaxation
In this work, we study the spin dynamics of Mn12-acetate molecules in the
regime of thermally assisted tunneling. In particular, we describe the system
in the presence of a strong transverse magnetic field. Similar to recent
experiments, the relaxation time/rate is found to display a series of
resonances; their Lorentzian shape is found to stem from the tunneling. The
dynamic susceptibility is calculated starting from the microscopic
Hamiltonian and the resonant structure manifests itself also in .
Similar to recent results reported on another molecular magnet, Fe8, we find
oscillations of the relaxation rate as a function of the transverse magnetic
field when the field is directed along a hard axis of the molecules. This
phenomenon is attributed to the interference of the geometrical or Berry phase.
We propose susceptibility experiments to be carried out for strong transverse
magnetic fields to study of these oscillations and for a better resolution of
the sharp satellite peaks in the relaxation rates.Comment: 22 pages, 23 figures; submitted to Phys. Rev. B; citations/references
adde
Suppressing Electroweak Precision Observables in 5D Warped Models
We elaborate on a recently proposed mechanism to suppress large contributions
to the electroweak precision observables in five dimensional (5D) warped
models, without the need for an extended 5D gauge sector. The main ingredient
is a modification of the AdS metric in the vicinity of the infrared (IR) brane
corresponding to a strong deviation from conformality in the IR of the 4D
holographic dual. We compute the general low energy effective theory of the 5D
warped Standard Model, emphasizing additional IR contributions to the wave
function renormalization of the light Higgs mode. We also derive expressions
for the S and T parameters as a function of a generic 5D metric and zero-mode
wave functions. We give an approximate formula for the mass of the radion that
works even for strong deviation from the AdS background. We proceed to work out
the details of an explicit model and derive bounds for the first KK masses of
the various bulk fields. The radion is the lightest new particle although its
mass is already at about 1/3 of the mass of the lightest resonances, the KK
states of the gauge bosons. We examine carefully various issues that can arise
for extreme choices of parameters such as the possible reintroduction of the
hierarchy problem, the onset of nonperturbative physics due to strong IR
curvature or the creation of new hierarchies near the Planck scale. We conclude
that a KK scale of 1 TeV is compatible with all these constraints.Comment: 44 pages, 11 figures, references adde
- …