2,081 research outputs found

    Pulse-to-pulse intensity modulation and drifting subpulses in recycled pulsars

    Get PDF
    We report the detection of pulse-to-pulse periodic intensity modulations, in observations of recycled pulsars. Even though the detection of individual pulses was generally not possible due to their low flux density and short duration, through the accumulation of statistics over sequences of 10^5--10^6 pulses we were able to determine the presence and properties of the pulse-to-pulse intensity variations of six pulsars. In most cases we found that the modulation included a weak, broadly quasi-periodic component. For two pulsars the sensitivity was high enough to ascertain that the modulation phase apparently varies systematically across the profile, indicating that the modulation appears as drifting subpulses. We detected brighter than average individual pulses in several pulsars, with energies up to 2--7 times higher than the mean, similar to results from normal pulsars. We were sensitive to giant pulses of a rate of occurrence equal to (and in many instances much lower than) that of PSR B1937+21 at 1400 MHz (~30 times lower than at 430 MHz), but none were detected, indicating that the phenomenon is rare in recycled pulsars.Comment: 15 pages, 17 figures, accepted to A&

    The Radial Extent and Warp of the Ionized Galactic Disk. I. A VLBA Survey of Extragalactic Sources Toward the Anticenter

    Full text link
    We report multifrequency Very Long Baseline Array observations of twelve active galactic nuclei seen toward the Galactic anticenter. All of the sources are at |b| < 10 degrees and seven have |b| < 0.5 degrees. Our VLBA observations can detect an enhancement in the angular broadening of these sources due to an extended H II disk, if the orientation of the H II disk in the outer Galaxy is similar to that of the H I disk. Such an extended H II disk is suggested by the C IV absorption in a quasar's spectrum, the appearance of H I disks of nearby spiral galaxies, and models of Ly-alpha cloud absorbers and the Galactic fountain. We detect eleven of the twelve sources at one or more frequencies; nine of the sources are compact and suitable for an angular broadening analysis. A preliminary analysis of the observed angular diameters suggests that the H II disk does not display considerable warping or flaring and does not extend to large Galactocentric distances (R >~ 100 kpc). A companion paper (Lazio & Cordes 1997) combines these observations with those in the literature and presents a more comprehensive analysis.Comment: 19 pages, LaTeX2e with AASTeX macro aaspp4, accepted for publication in ApJS, Vol. 115, 1998 April; Figures 1, 3, and 4 included, for figures of individual sources see http://astrosun.tn.cornell.edu/students/lazio/Anticenter/anticenterI.htm

    The Radial Extent and Warp of the Ionized Galactic Disk. II. A Likelihood Analysis of Radio-Wave Scattering Toward the Anticenter

    Full text link
    We use radio-wave scattering data to constrain the distribution of ionized gas in the outer Galaxy. Like previous models, our model for the H II disk includes parameters for the radial scale length and scale height of the H II, but we allow the H II disk to warp and flare. Our model also includes the Perseus arm. We use a likelihood analysis on 11 extragalactic sources and 7 pulsars. Scattering in the Perseus arm is no more than 60% of the level contributed by spiral arms in the inner Galaxy, equivalent to a 1 GHz scattering diameter of 1.5 mas. Our analysis favors an unwarped, nonflaring disk with a 1 kpc scale height, though this may reflect the non-uniform and coarse coverage provided by the available data. The lack of a warp indicates that VLBI observations near 1 GHz with an orbiting station having baseline lengths of a few Earth diameters will not be affected by interstellar scattering at Galactic latitudes |b| ~ 15 degrees. The radial scale length is 15--20 kpc, but the data cannot distinguish between a gradual decrease in the electron density and a truncated distribution. We favor a truncated one, because we associate the scattering with massive star formation, which is also truncated near 20 kpc. The distribution of electron density turbulence decreases more rapidly with Galactocentric distance than does the hydrogen distribution. Alternate ionizing and turbulent agents---the intergalactic ionizing flux and satellite galaxies passing through the disk---do not contribute significantly to scattering. We cannot exclude the possibility that a largely ionized, but quiescent disk extends to >~ 100 kpc, similar to that for some Ly-alpha absorbers.Comment: 34 pages, LaTeX2e with AASTeX aaspp4 macro, 9 figures in 9 PostScript files, accepted for publication in Ap

    The Relationship Between Belief and Credence

    Get PDF
    Sometimes epistemologists theorize about belief, a tripartite attitude on which one can believe, withhold belief, or disbelieve a proposition. In other cases, epistemologists theorize about credence, a fine-grained attitude that represents one’s subjective probability or confidence level toward a proposition. How do these two attitudes relate to each other? This article explores the relationship between belief and credence in two categories: descriptive and normative. It then explains the broader significance of the belief-credence connection and concludes with general lessons from the debate thus far

    Testing post-Newtonian theory with gravitational wave observations

    Full text link
    The Laser Interferometric Space Antenna (LISA) will observe supermassive black hole binary mergers with amplitude signal-to-noise ratio of several thousands. We investigate the extent to which such observations afford high-precision tests of Einstein's gravity. We show that LISA provides a unique opportunity to probe the non-linear structure of post-Newtonian theory both in the context of general relativity and its alternatives.Comment: 9 pages, 2 figure

    The Evolution of PSR J0737-3039B and a Model for Relativistic Spin Precession

    Full text link
    We present the evolution of the radio emission from the 2.8-s pulsar of the double pulsar system PSR J0737-3039A/B. We provide an update on the Burgay et al. (2005) analysis by describing the changes in the pulse profile and flux density over five years of observations, culminating in the B pulsar's radio disappearance in 2008 March. Over this time, the flux density decreases by 0.177 mJy/yr at the brightest orbital phases and the pulse profile evolves from a single to a double peak, with a separation rate of 2.6 deg/yr. The pulse profile changes are most likely caused by relativistic spin precession, but can not be easily explained with a circular hollow-cone beam as in the model of Clifton & Weisberg (2008). Relativistic spin precession, coupled with an elliptical beam, can model the pulse profile evolution well. This particular beam shape predicts geometrical parameters for the two bright orbital phases which are consistent and similar to those derived by Breton et al. (2008). However, the observed decrease in flux over time and B's eventual disappearance cannot be easily explained by the model and may be due to the changing influence of A on B.Comment: 20 pages, 18 figures, Accepted by ApJ on 2 August 201

    Genome-enabled phylogeographic investigation of the quarantine pathogen Ralstonia solanacearum race 3 biovar 2 and screening for sources of resistance against its core effectors.

    Get PDF
    Phylogeographic studies inform about routes of pathogen dissemination and are instrumental for improving import/export controls. Genomes of seventeen isolates of the bacterial wilt and potato brown rot pathogen Ralstonia solanacearum race 3 biovar 2 (R3bv2), a select agent in the USA, were thus analyzed to get insight into the phylogeography of this pathogen. Thirteen of fourteen isolates from Europe, Africa, and Asia were found to belong to a single clonal lineage while isolates from South America were genetically diverse and carried ancestral alleles at the analyzed genomic loci consistent with a South American origin of R3bv2. The R3bv2 isolates share a core repertoire of thirty-one type III-secreted effector genes representing excellent candidates to be targeted with resistance genes in breeding programs to develop durable disease resistance. Towards this goal, 27 R3bv2 effectors were tested in eggplant, tomato, pepper, tobacco, and lettuce for induction of a hypersensitive-like response indicative of recognition by cognate resistance receptors. Fifteen effectors, eight of them core effectors, triggered a response in one or more plant species. These genotypes may harbor resistance genes that could be identified and mapped, cloned and expressed in tomato or potato, for which sources of genetic resistance to R3bv2 are extremely limited.National Science Foundatio

    A List of Galaxies for Gravitational Wave Searches

    Full text link
    We present a list of galaxies within 100 Mpc, which we call the Gravitational Wave Galaxy Catalogue (GWGC), that is currently being used in follow-up searches of electromagnetic counterparts from gravitational wave searches. Due to the time constraints of rapid follow-up, a locally available catalogue of reduced, homogenized data is required. To achieve this we used four existing catalogues: an updated version of the Tully Nearby Galaxy Catalog, the Catalog of Neighboring Galaxies, the V8k catalogue and HyperLEDA. The GWGC contains information on sky position, distance, blue magnitude, major and minor diameters, position angle, and galaxy type for 53,255 galaxies. Errors on these quantities are either taken directly from the literature or estimated based on our understanding of the uncertainties associated with the measurement method. By using the PGC numbering system developed for HyperLEDA, the catalogue has a reduced level of degeneracies compared to catalogues with a similar purpose and is easily updated. We also include 150 Milky Way globular clusters. Finally, we compare the GWGC to previously used catalogues, and find the GWGC to be more complete within 100 Mpc due to our use of more up-to-date input catalogues and the fact that we have not made a blue luminosity cut.Comment: Accepted for publication in Classical and Quantum Gravity, 13 pages, 7 figure

    Neutron star properties in a chiral SU(3) model

    Full text link
    We investigate various properties of neutron star matter within an effective chiral SU(3)L×SU(3)RSU(3)_L \times SU(3)_R model. The predictions of this model are compared with a Walecka-type model. It is demonstrated that the importance of hyperon degrees are strongly depending on the interaction used, even if the equation of state near saturation density is nearly the same in both models. While the Walecka-type model predicts a strange star core with strangeness fraction fS4/3f_S \approx 4/3, the chiral model allows only for fS1/3f_S \approx 1/3 and predicts that Σ0\Sigma^0, Σ+\Sigma^+ and Ξ0\Xi^0 will not exist in star, in contrast to the Walecka-type model.Comment: 13 pages, Revtex, 5 figs include
    corecore