1,287 research outputs found

    Angular Differential Imaging: a Powerful High-Contrast Imaging Technique

    Full text link
    Angular differential imaging is a high-contrast imaging technique that reduces quasi-static speckle noise and facilitates the detection of nearby companions. A sequence of images is acquired with an altitude/azimuth telescope while the instrument field derotator is switched off. This keeps the instrument and telescope optics aligned and allows the field of view to rotate with respect to the instrument. For each image, a reference PSF is constructed from other appropriately-selected images of the same sequence and subtracted to remove quasi-static PSF structure. All residual images are then rotated to align the field and are combined. Observed performances are reported for Gemini North data. It is shown that quasi-static PSF noise can be reduced by a factor \~5 for each image subtraction. The combination of all residuals then provides an additional gain of the order of the square root of the total number of acquired images. A total speckle noise attenuation of 20-50 is obtained for one-hour long observing sequences compared to a single 30s exposure. A PSF noise attenuation of 100 was achieved for two-hour long sequences of images of Vega, reaching a 5-sigma contrast of 20 magnitudes for separations greater than 8". For a 30-minute long sequence, ADI achieves 30 times better signal-to-noise than a classical observation technique. The ADI technique can be used with currently available instruments to search for ~1MJup exoplanets with orbits of radii between 50 and 300 AU around nearby young stars. The possibility of combining the technique with other high-contrast imaging methods is briefly discussed.Comment: 27 pages, 7 figures, accepted for publication in Ap

    Astrometric Monitoring of the HR 8799 Planets: Orbit Constraints from Self-Consistent Measurements

    Full text link
    We present new astrometric measurements from our ongoing monitoring campaign of the HR 8799 directly imaged planetary system. These new data points were obtained with NIRC2 on the W.M. Keck II 10 meter telescope between 2009 and 2014. In addition, we present updated astrometry from previously published observations in 2007 and 2008. All data were reduced using the SOSIE algorithm, which accounts for systematic biases present in previously published observations. This allows us to construct a self-consistent data set derived entirely from NIRC2 data alone. From this dataset, we detect acceleration for two of the planets (HR 8799b and e) at >>3σ\sigma. We also assess possible orbital parameters for each of the four planets independently. We find no statistically significant difference in the allowed inclinations of the planets. Fitting the astrometry while forcing coplanarity also returns χ2\chi^2 consistent to within 1σ\sigma of the best fit values, suggesting that if inclination offsets of \lesssim20o^{o} are present, they are not detectable with current data. Our orbital fits also favor low eccentricities, consistent with predictions from dynamical modeling. We also find period distributions consistent to within 1σ\sigma with a 1:2:4:8 resonance between all planets. This analysis demonstrates the importance of minimizing astrometric systematics when fitting for solutions to highly undersampled orbits.Comment: 18 pages, 11 figures. Accepted for publication in A

    Direct Imaging of Multiple Planets Orbiting the Star HR 8799

    Full text link
    Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step towards imaging Earth-like planets. Imaging detections are challenging due to the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter-clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our Solar System.Comment: 30 pages, 5 figures, Research Article published online in Science Express Nov 13th, 200

    The Structure of High Strehl Ratio Point-Spread Functions

    Full text link
    We describe the symmetries present in the point-spread function (PSF) of an optical system either located in space or corrected by an adaptive o to Strehl ratios of about 70% and higher. We present a formalism for expanding the PSF to arbitrary order in terms of powers of the Fourier transform of the residual phase error, over an arbitrarily shaped and apodized entrance aperture. For traditional unapodized apertures at high Strehl ratios, bright speckles pinned to the bright Airy rings are part of an antisymmetric perturbation of the perfect PSF, arising from the term that is first order in the residual phase error. There are two symmetric second degree terms. One is negative at the center, and, like the first order term, is modulated by the perfect image's field strength -- it reduces to the Marechal approximation at the center of the PSF. The other is non-negative everywhere, zero at the image center, and can be responsible for an extended halo -- which limits the dynamic range of faint companion detection in the darkest portions of the image. In regimes where one or the other term dominates the speckles in an image, the symmetry of the dominant term can be exploited to reduce the effect of those speckles, potentially by an order of magnitude or more. We demonstrate the effects of both secondary obscuration and pupil apodization on the structure of residual speckles, and discuss how these symmetries can be exploited by appropriate telescope and instrument design, observing strategies, and filter bandwidths to improve the dynamic range of high dynamic range AO and space-based observations. Finally, we show that our analysis is relevant to high dynamic range coronagraphy.Comment: Accepted for publication in ApJ; 20 pages, 4 figure

    Speckle Control with a remapped-pupil PIAA-coronagraph

    Full text link
    The PIAA is a now well demonstrated high contrast technique that uses an intermediate remapping of the pupil for high contrast coronagraphy (apodization), before restoring it to recover classical imaging capabilities. This paper presents the first demonstration of complete speckle control loop with one such PIAA coronagraph. We show the presence of a complete set of remapping optics (the so-called PIAA and matching inverse PIAA) is transparent to the wavefront control algorithm. Simple focal plane based wavefront control algorithms can thus be employed, without the need to model remapping effects. Using the Subaru Coronagraphic Extreme AO (SCExAO) instrument built for the Subaru Telescope, we show that a complete PIAA-coronagraph is compatible with a simple implementation of a speckle nulling technique, and demonstrate the benefit of the PIAA for high contrast imaging at small angular separation.Comment: 6 figures, submitted to PAS

    The VAST Survey - IV. A wide brown dwarf companion to the A3V star ζ\zeta Delphini

    Full text link
    We report the discovery of a wide co-moving substellar companion to the nearby (D=67.5±1.1D=67.5\pm1.1 pc) A3V star ζ\zeta Delphini based on imaging and follow-up spectroscopic observations obtained during the course of our Volume-limited A-Star (VAST) multiplicity survey. ζ\zeta Del was observed over a five-year baseline with adaptive optics, revealing the presence of a previously-unresolved companion with a proper motion consistent with that of the A-type primary. The age of the ζ\zeta Del system was estimated as 525±125525\pm125 Myr based on the position of the primary on the colour-magnitude and temperature-luminosity diagrams. Using intermediate-resolution near-infrared spectroscopy, the spectrum of ζ\zeta Del B is shown to be consistent with a mid-L dwarf (L5±25\pm2), at a temperature of 1650±2001650\pm200 K. Combining the measured near-infrared magnitude of ζ\zeta Del B with the estimated temperature leads to a model-dependent mass estimate of 50±1550\pm15 MJup_{\rm Jup}, corresponding to a mass ratio of q=0.019±0.006q=0.019\pm0.006. At a projected separation of 910±14910\pm14 au, ζ\zeta Del B is among the most widely-separated and extreme-mass ratio substellar companions to a main-sequence star resolved to-date, providing a rare empirical constraint of the formation of low-mass ratio companions at extremely wide separations.Comment: 12 pages, 11 figures, accepted for publication in the Monthly Notices of the Royal Astronomical Society, 2014 September 25. Revised to incorporate typographical errors noted during the proofing proces

    The VAST Survey - III. The multiplicity of A-type stars within 75 pc

    Full text link
    With a combination of adaptive optics imaging and a multi-epoch common proper motion search, we have conducted a large volume-limited (D \le 75 pc) multiplicity survey of A-type stars, sensitive to companions beyond 30 au. The sample for the Volume-limited A-STar (VAST) survey consists of 435 A-type stars: 363 stars were observed with adaptive optics, 228 stars were searched for wide common proper motion companions and 156 stars were measured with both techniques. The projected separation coverage of the VAST survey extends from 30 to 45,000 au. A total of 137 stellar companions were resolved, including 64 new detections from the VAST survey, and the companion star fraction, projected separation distribution and mass ratio distribution were measured. The separation distribution forms a log-normal distribution similar to the solar-type binary distribution, but with a peak shifted to a significantly wider value of 387 (+132,-98) au. Integrating the fit to the distribution over the 30 to 10,000 au observed range, the companion star fraction for A-type stars is estimated as 33.8%+-2.6%. The mass ratio distribution of closer (<125 au) binaries is distinct from that of wider systems, with a flat distribution for close systems and a distribution that tends towards smaller mass ratios for wider binaries. Combining this result with previous spectroscopic surveys of A-type stars gives an estimate of the total companion star fraction of 68.9%+-7.0%. The most complete assessment of higher order multiples was estimated from the 156-star subset of the VAST sample with both adaptive optics and common proper motion measurements, combined with a literature search for companions, yielding a lower limit on the frequency of single, binary, triple, quadruple and quintuple A-type star systems of 56.4 (-4.0,+3.8), 32.1 (-3.5,+3.9), 9.0 (-1.8,+2.8), 1.9 (-0.6,+1.8) and 0.6 (-0.2,+1.4) per cent, respectively.Comment: 46 pages, 24 figures. Accepted for publication in the Monthly Notices of the Royal Astronomical Society, 7th October 201

    Formation, Survival, and Detectability of Planets Beyond 100 AU

    Get PDF
    Direct imaging searches have begun to detect planetary and brown dwarf companions and to place constraints on the presence of giant planets at large separations from their host star. This work helps to motivate such planet searches by predicting a population of young giant planets that could be detectable by direct imaging campaigns. Both the classical core accretion and the gravitational instability model for planet formation are hard-pressed to form long-period planets in situ. Here, we show that dynamical instabilities among planetary systems that originally formed multiple giant planets much closer to the host star could produce a population of giant planets at large (~100 AU - 100000 AU) separations. We estimate the limits within which these planets may survive, quantify the efficiency of gravitational scattering into both stable and unstable wide orbits, and demonstrate that population analyses must take into account the age of the system. We predict that planet scattering creates a population of detectable giant planets on wide orbits that decreases in number on timescales of ~10 Myr. We demonstrate that several members of such populations should be detectable with current technology, quantify the prospects for future instruments, and suggest how they could place interesting constraints on planet formation models.Comment: 13 pages (emulateapj format), 10 figures, accepted for publication in Ap
    corecore