12,308 research outputs found
Microlens Parallax Asymmetries Toward the LMC
If the microlensing events now being detected toward the Large Magellanic
Cloud (LMC) are due to lenses in the Milky Way halo, then the events should
typically have asymmetries of order 1% due to parallax from the reflex motion
of the Earth. By contrast, if the lenses are in the LMC, the parallax effects
should be negligible. A ground-based search for such parallax asymmetries would
therefore clarify the location of the lenses. A modest effort (2 hours per
night on a 1 m telescope) could measure 15 parallax asymmetries over 5 years
and so marginally discriminate between the halo and the LMC as the source of
the lenses. A dedicated 1 m telescope would approximately double the number of
measurements and would therefore clearly distinguish between the alternatives.
However, compared to satellite parallaxes, the information extracted from
ground-based parallaxes is substantially less useful for understanding the
nature of the halo lenses (if that is what they are). The backgrounds of
asymmetries due to binary-source and binary-lens events are estimated to be
approximately 7% and 12% respectively. These complicate the interpretation of
detected parallax asymmetries, but not critically.Comment: Submitted to ApJ, 17 pages, including 2 embedded figure
Development of a versatile laser light scattering instrument
A versatile laser light scattering (LLS) instrument is developed for use in microgravity to measure microscopic particles of 30 A to above 3 microns. Since it is an optical technique, LLS does not affect the sample being studied. A LLS instrument built from modules allows several configurations, each optimized for a particular experiment. The multiangle LLS instrument can be mounted in the rack in the Space Shuttle and on Space Station Freedom. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations. This offers simple means of flying a great number of experiments without the additional requirements of full-scale flight hardware experiments
Search for Turbulent Gas through Interstellar Scintillation
Stars twinkle because their light propagates through the atmosphere. The same
phenomenon is expected when the light of remote stars crosses a Galactic - disk
or halo - refractive medium such as a molecular cloud.We present the promising
results of a test performed with the ESO-NTT and the perspectives.Comment: Tenth Symposium on Sources and Detection of Dark Matter and Dark
  Energy in the Universe, Los-Angeles : \'Etats-Unis (2012
A Fiber Optic Probe for the Detection of Cataracts
A compact fiber optic probe developed for on-orbit science experiments was used to detect the onset of cataracts, a capability that could eliminate physicians' guesswork and result in new drugs to 'dissolve' or slow down the cataract formation before surgery is necessary. The probe is based upon dynamic light scattering (DLS) principles. It has no moving parts, no apertures, and requires no optical alignment. It is flexible and easy to use. Results are presented for excised but intact human eye lenses. In a clinical setting, the device can be easily incorporated into a slit-lamp apparatus (ophthalmoscope) for complete eye diagnostics. In this set-up, the integrated fiber optic probe, the size of a pencil, delivers a low power cone of laser light into the eye of a patient and guides the light which is backscattered by the protein molecules of the lens through a receiving optical fiber to a photo detector. The non-invasive DLS measurements provide rapid determination of protein crystalline size and its size distribution in the eye lens
Measuring the Rotation Speed of Giant Stars From Gravitational Microlensing
During some gravitational lensing events, the lens transits the face of the
star. This causes a shift in the apparent radial velocity of the star which is
proportional to its rotation speed. It also changes the magnification relative
to what would be expected for a point source. By measuring both effects, one
can determine the rotation parameter . The method is especially useful
for K giant stars because these have turbulent velocities that are typically
large compared with their rotation speed. By making a series of radial velocity
measurements, one can typically determine  to the same accuracy as the
individual radial velocity measurements. There are approximately 10
microlensing transit events per year which would be suitable to make these
measurements.Comment: 11 pages including 1 embedded figur
A New Channel for the Detection of Planetary Systems Through Microlensing: II. Repeating Events
In the companion paper we began the task of systematically studying the
detection of planets in wide orbits () via microlensing surveys.
In this paper we continue, focusing on repeating events. We find that, if all
planetary systems are similar to our own Solar System, reasonable extensions of
the present observing strategies would allow us to detect 3-6 repeating events
per year along the direction to the Bulge. Indeed, if planetary systems with
multiple planets are common, then future monitoring programs which lead to the
discovery of thousands of stellar-lens events will likely discover events in
which several different planets within a single system serve as lenses, with
light curves exhibiting multiple repetitions. In this paper we discuss
observing strategies to maximize the discovery of all wide-orbit planet-lens
events. We also compare the likely detection rates of planets in wide orbits to
those of planets located in the zone for resonant lensing. We find that,
depending on the values of the planet masses and stellar radii of the lensed
sources (which determine whether or not finite source size is important), and
also on the sensitivity of the photometry used by observers, the detection of
planets in wide orbits may be the primary route to the discovery of planets via
microlensing. We also discuss how the combination of resonant and wide-orbit
events can help us to learn about the distribution of planetary system
properties (S 6.1). In addition, by determining the fraction of short-duration
events due to planets, we indirectly derive information about the fraction of
all short-duration events that may be due to low-mass MACHOs (S 6.2).Comment: 51 pages, 7 figures. To be published in the Astrophysical Journal, 20
  February 1999. This completes the introduction to the discovery of planets in
  wide orbits begun in astro-ph/9808075, also to appear in ApJ on 20 February
  199
Improved Detection Rates for Close Binaries Via Astrometric Observations of Gravitational Microlensing Events
In addition to constructing a Galactic matter mass function free from the
bias induced by the hydrogen-burning limit, gravitational microlensing allows
one to construct a mass function which is less affected by the problem of
unresolved binaries (Gaudi & Gould). However, even with the method of
microlensing, the photometric detection of binaries is limited to binary
systems with relatively large separations of  of their combined
Einstein ring radius, and thus the mass function is still not totally free from
the problem of unresolved binaries. In this paper, we show that by detecting
distortions of the astrometric ellipse of a microlensing event with high
precision instruments such as the {\it Space Interferometry Mission}, one can
detect close binaries at a much higher rate than by the photometric method. We
find that by astrometrically observing microlensing events,  of
binaries with separations of  can be detected with the detection
threshold of 3%. The proposed astrometric method is especially efficient at
detecting very close binaries. With a detection threshold of 3% and a rate of
10%, one can astrometrically detect binaries with separations down to .Comment: total 14 pages, including 5 Figures and no Table (For figure 1,
  please send a request mail to [email protected]), accepted to
  ApJ (Vol 525, 000), updated versio
Distributed Detection of a Signal in Generalized Gaussian Noise
The problem of distributed detection of a signal in incompletely specified noise is considered. The noise assumed belongs to the generalized Gaussian family and the sensors in the distributed network employ the Wilcoxon test. The sensors pass the test statistics to a fusion center, where a hypothesis testing results in a decision regarding the presence or the absence of a signal. Three monotone and admissible fusion center tests are formulated. Restricted numerical evaluation over a certain parameter range of the noise distribution and the range of signal level indicates that these tests yield performances at comparable levels
- …
