In addition to constructing a Galactic matter mass function free from the
bias induced by the hydrogen-burning limit, gravitational microlensing allows
one to construct a mass function which is less affected by the problem of
unresolved binaries (Gaudi & Gould). However, even with the method of
microlensing, the photometric detection of binaries is limited to binary
systems with relatively large separations of b≳0.4 of their combined
Einstein ring radius, and thus the mass function is still not totally free from
the problem of unresolved binaries. In this paper, we show that by detecting
distortions of the astrometric ellipse of a microlensing event with high
precision instruments such as the {\it Space Interferometry Mission}, one can
detect close binaries at a much higher rate than by the photometric method. We
find that by astrometrically observing microlensing events, ∼50 of
binaries with separations of 0.1rE can be detected with the detection
threshold of 3%. The proposed astrometric method is especially efficient at
detecting very close binaries. With a detection threshold of 3% and a rate of
10%, one can astrometrically detect binaries with separations down to ∼0.01rE.Comment: total 14 pages, including 5 Figures and no Table (For figure 1,
please send a request mail to [email protected]), accepted to
ApJ (Vol 525, 000), updated versio