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Distributed Detection of a Signal in Generalized 
Gaussian Noise 

R. VISWANATHAN A N D  ARIF ANSARI 

Abstract-The problem of distributed detection of a signal in incom- 
pletely specified noise is considered. The noise assumed belongs to the 
generalized Gaussian family and the sensors in the distributed network 
employ the Wilcoxon test. The sensors pass the test statistics to a fusion 
center, where a hypothesis testing results in a decision regarding the 
presence or the absence of a signal. Three monotone and admissible 
fusion center tests are formulated. Restricted numerical evaluation over 
a certain parameter range of the noise distribution and the range of 
signal level indicates that these tests yield performances at comparable 
levels. 

I .  INTRODUCTION 
The problem of detection of a signal using a distributed network 

of sensors has been analyzed in the literature. In order to save 
transmission bandwidths, the sensors process the information they 
receive and pass condensed information, such as the test statistics 
or the decisions with regard to the presence or the absence of a 
signal, to the fusion center. For the best performance, it is essential 
that the processing at the sensors and at the fusion be optimized 

So far, the problem analyzed in the literature assumes a complete 
statistical knowledge of the received signal. However, in sonar and 
other underwater detection problems, the signal is embedded in a 
noise whose characteristics are not completely known and are 
changing with time. In such situations, the sensors’ statistics must 
be based on some general characteristics of the noise density func- 
tion rather than on some specific form of noise density function. In 
this correspondence, we consider the distributed detection of a con- 
stant signal in generalized Gaussian noise. Such a noise density 
function approximates physical noise encountered in different sit- 
uations [ lo] ,  [ l l ] .  

In Section I1 we discuss test statistics at the sensors and at the 
fusion. In Section 111 we present the performance analysis of three 

[11-[91. 
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different tests at the fusion center. Numerical results are shown for 
a three sensors network with three samples per sensor. We con- 
clude our discussion in Section IV. 

11. THE GENERALIZED GAUSSIAN NOISE A N D  DISTRIBUTED 
TESTS 

The problem of detection of a constant signal in additive noise 
is described by the following hypotheses testing: 

Ho: XI = nl 

( 1 )  Hi: X ,  = n, + 8 ,  j an integer. 

We assume that the noise nl has a symmetric density function 
described by the following equation [ 1 I]: 

The noise has unit variance and hence a satisfies the relation 

a 2 / c  = r ( 3 / c ) / r ( i / c ) .  (3)  
By varying the parameter c ,  we can control the tail of the noise 

density. When c equals 2 the noise reduces to the Gaussian, and 
for c equals 1 it becomes Laplace. In general, smaller values of c 
represent heavy tails. For detecting a signal in symmetric noise at 
a sensor, a variety of nonparametric tests such as the sign test and 
the Wilcoxon test exist [12]. Our choice of the Wilcoxon test is 
motivated by the fact that i) the Wilcoxon test is nonparametric, i i )  
its performance is comparable to other nonparametric tests, i i i )  it 
performs better than the sign test in most cases, and iv) the Wil- 
coxon statistic takes on a finite number of discrete values. 

Fig. 1 shows the distributed network of sensors and the fusion 
center. The statistics T, ,  T I ,  . . . , TN are the Wilcoxon statistics, 
and the test at the fusion is given as follows: 

HI 

Hii 
S ( T , ,  . . . , TN) s f. (4) 

Here S is a statistic based on T , ,  . . . , Tw. The observations XI 
. . . X ,  at each sensor are assumed to be independent and identi- 
cally distributed according to (1). Hence, the Tk’s are i.i.d. A se,.- 
sor performs the Wilcoxon test by ranking the absolute values of 
the X,’s and summing the ranks of the absolute values which are 
due to positive observations. The performance of the Wilcoxon test 
is well understood [ 121. It is possible to obtain the distribution of 
Tk under Ho and H ,  by enumeration. For large values of n ,  it is 
difficult to obtain the distribution. However, the mean and the 
variance can be found [12]: 

A, = N ( ”  - ’) [ F ( u )  - F ( - u ) ] ‘ - l  
i - 1  

. [ 1 - F ( u )  + F (  -u)]”-’f(u) du ( 7 )  

wheref( ) is the density of the observation X ,  and F (  ) is the cor- 
responding CDF. 

We consider three different statistics at the fusion. The minimum 
test is given by the rule 

HI 

Ho 
(8)  Min [Ti ,  . . . , TN] 3 t ,  

where t ,  is chosen to obtain a specific false alarm probability at the 
fusion center. However, when Tk’s given the hypothesis are i.i.d., 
if any order statistic of { Tk’s}  is used as a test statistic at the fu- 
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5 distributed with Pr ( Tk = m )  = 1 /8 ,  m # 3, and Pr ( Th = 3 )  = 
2 /8 .  Under H I ,  the probability of Th is given by the following sum: 

DECISION 

Fig. 1. Distributed sensor network. 

sion, then the same performance can also be achieved by allowing 
the sensors to make decisions based on Tk’s and by using an ap- 
propriate counting rule based on their decisions. To see this, con- 
sider the rules based on the lth-order statistic, T,,, s i: t ,  and the 
counting rule based on the sensors tests Tk S t ,  and the fusion 
rule which declares the signal present if at least ( N  - 1 + 1 ) sen- 
sors decide the presence of a signal. The probabilities of detection 
at a fixed false alarm probability for these two fusion tests are iden- 
tical. The probability of detection is given by the following expres- 
sion: 

where F, (  ) is the CDF of X, in (1) under HI. Therefore, the full 
benefit of transmitting the statistic instead of the decision may be 
lost in this combining procedure at the fusion. Numerical perfor- 
mance analysis of the minimum test is presented in the next sec- 
tion. The tests based on other order statistics are not considered 
because, without randomization, they achieve only large false alarm 
probabilities. The next test, termed the linear Wilcoxon, is based 
on the sum of the Tk’s.  

Finally, for small n and N ,  a symmetric fusion test given by the 
following rule is considered: 

Reject Ho for { TA 2 t,, 

all possible combinations of k and j } . (11) 

We consider several of these ad hoc tests at the fusion because, 
in general, no uniformly most powerful test based on the { Tk’s} 
exists. All the three tests considered are “reasonable” in the sense 
that they are monotone, i .e. ,  if certain { T:}  is in the reject Ho 
region, then { Th 2 T Z }  is also in the rejection region. In Section 
IV these are all shown to be admissible. One can design best tests 
at the sensors and at the fusion only when the statistical distribution 
of the observation is completely known. 

111. NUMERICAL PERFORMANCE ANALYSIS 
In order to show the small sample performance, we consider a 

network of three sensors ( N  = 3)  and a sample size of 3 ( n  = 3 ) .  
The Wilcoxon test statistic Tk assumes values 0-6. Under Ho,  Tk is 

I 

Z r I  A ,  rI ( I - A , )  (12) 
I = I  I r , # r , s N  

where A,’s are given in (7),  exactly I specified ranks r l ,  r2 ,  . . . , 
rl out of n have positive signs, and the summation is extended over 
all sets of assignments of positive signs which will lead to that 
value of Tk. Since we consider only small values of N ,  the distri- 
butions of the linear Wilcoxon, the minimum, and the symmetric 
test can easily be obtained once the distributions of Th under Ho 
and HI are calculated. For example, in the case of linear Wilcoxon, 
the discrete convolution is employed twice. To avoid any heavy 
randomization, attention is restricted to only nonrandomized tests 
at the fusion center. Figs. 2-5 show the performance of the three 
tests. For all the tests, for weak signal (small values of O), the 
detection power is larger for heavy tail noise and the converse is 
true for strong signal. By looking at the trends in these figures, we 
observe that all the tests perform comparably well. Since the prob- 
abilities of false alarms do not match with nonrandomized testing, 
actual comparison of the tests is not possible. In Fig. 6 we show 
the performances of linear detector (linear detector computes the 
sum of all the observations at all the sensors and compares the sum 
to a threshold), which is optimum for Gaussian, and the linear Wil- 
coxon detector. For moderate signal strength, the loss associated 
with the linear Wilcoxon as compared to linear detector is clearly 
seen. 

For large N ,  the performances of any two tests could be com- 
pared by Asymptotic Relative Efficiency (ARE). It is given by the 
ratio of the sample sizes required by the two tests to achieve the 
same detection probability and false alarm probability as the signal 
level goes to zero and as both the sample sizes tend to infinity [ 121. 
By using the approach in [ 121, the ARE of the linear Wilcoxon test 
with respect to the linear detector can be computed to yield 

6 (  1 + % ) 2 c y 2 / c  

ARE = (13) (. + 1)(2. + i)r2(i + I / c ) ‘  

The above ARE is plotted in Fig. 7 for various c values. For heavy 
tailed noise, the linear Wilcoxon has ARE larger than 1 compared 
to the linear detector. 

IV. DISCUSSION 
The problem of detection of a constant signal in incompletely 

known noise with a distributed network of sensors is considered. 
The noise assumed is symmetric and has a generalized Gaussian 
density function. The sensors employ the Wilcoxon test and pass 
the test statistics to a fusion center. Since the statistics of the noise 
are not completely known, there exists no uniformly best test at the 
fusion center. We consider three monotone tests based on the Wil- 
coxon test statistics. 

Among the tests considered for fusion, choosing a test which 
performs better than the rest is dependent on the signal level, the 
parameter c ,  and the operating false alarm probability. All possible 
tests, which are reasonable in the sense that they are monotone, 
would then have to be enumerated. However, the monotonicity 
condition is satisfied by so many possible methods of combination, 
a search over all possible tests of this class is quite complex. A 
combined test procedure is said to be admissible if it provides a 
(not necessarily the only) most powerful test against some alter- 
native hypothesis. It may seem reasonable to narrow our search to 
tests that are admissible. Unfortunately, the class of admissible 
combined test procedures is still quite large [13]. From Table I i t  
is seen that all the tests discussed are admissible. However, without 
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TABLE I 
OPTIMUM LIKELIHOOD RATIO TEST A N D  EQUIVALENT TESTS 

~ 

Signal Level Likelihood Ratio Equivalent T e s t s  
Threshold Threshold in parenthesis 

100 cc[0.5,2.01 Linear Wilcoxon (18) 1.0 
Same as Min (18) or 

Symnetric (6,6,6) 
1.0 36 cc[0.5,2.0] Linear Wilcoxon (17 )  

1.0 11.39 cc[0.5,1.01 Symnetric (6,6,4) 

2.0 2.55 cc [ 1 .O, 2.01 Symnetric (6,6,4) 

Same as Symnetric (6,6,5) 

cr[0.5,2.0] Linear Wilcoxon (16) 

some knowledge of signal level and the noise parameter c, an op- 
timum choice of a particular test from the class of monotone ad- 
missible tests does not seem possible. 
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ment and performs in a near optimum way. 
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I. INTRODUCTION 
The purpose of this correspondence is to introduce an efficient 

method for encoding sparse binary patterns (images), where the 
term “sparse” implies that the patterns consist of a small number 
of ones, relative to the number of zeros. 

The technique we consider will be referred to as block coding. 
It is shown that block coding enables us to encode sparse binary 
patterns with average code word lengths Lo,, ( p ) that compare very 
closely to the source entropy H (  p )  whenp is small, wherep is the 
probability of finding a one in the given pattern. Since I,(,,,( p )  
closely approximates H (  p ) ,  we can view such block codes as being 
close to optimum for encoding sparse binary patterns [ I ] .  

The sparse pattern we deal with is assumed to be a memoryless 
binary source. This kind of pattern is found in a 3-D authentication 
scheme [2]. In data compression, the patterns are usually not mem- 
oryless sources. However, when LPC (Linear Prediction Coding) 
is applied, the resulting error pattern is very close to a memoryless 
model. Yasuda [3] presented some effective methods to decorrelate 
2-D facsimile patterns. For example, Boolean algebra prediction 
functions 13, p. 8341 are shown to be very effective for typical 
typewritten English and Japanese documents and weather maps. 
The error patterns that result via prediction are sparse, and hence 
our block coding technique may be useful for this application also. 

After the block coding method is introduced, it is compared to 
some other existing methods. 

11. BLOCK CODING 
For the purposes of discussion, we consider a (128 X 128) 

sparse binary pattern in which the probability of finding a one is p 
= 0.01, As such, the probability of finding a zero is q = I - p = 
0.99. If this pattern is scanned on a row-by-row basis, it follows 
that we obtain a 1-dimensional array consisting of n = 16 384 bits. 

The proposed block coding scheme consists of the following 
steps. 

1) Map a 2-D image into a I-dimensional array by row-by-row 
scanning. The I-dimensional array consists of n = 2M ones and 
zeros. 

2) Divide the 2M bit-string obtained in Step 1) into 2“ blocks, 
with each block consisting of 2’ bits; i t  then follows that M = a + 
b. 

3) Between any two adjacent blocks we introduce a comma, 
which is encoded as a “0.” 

4a) If there is no one in a block, then no coding is needed for 
the block. 

4b) If there are ones in a block, then assign each one a prefix 
“ I ”  followed by b bits to indicate its location in the block. This 
location is with respect to the left end of the 2”bit string and num- 
bered from 0 through 2’ - 1. The reason for the prefix “ 1 ”  is to 
realize an instantaneous code. 

5) The bit-string resulting from Step 4)  is desired code. 
The above steps are best illustrated by a simple example. Sup- 

pose we consider the ( 4  X 4 )  binary pattern in Fig. 1. Then the 
results obtained via Steps 1)-5) above are as summarized in  Fig. 
1, for the case M = 4, and a = b = 2. 

The decoding procedure is just the reverse of the coding proce- 
dure. 

In general, if we have k ones and n - k zeros, the code length, 
L ( k ) ,  is given by 

L ( k )  = (rows - 1) + k(coding bits per one) 

= (2” - 1 )  + k ( b  + 1 )  = (2“ - 1 )  + k ( M  - a + 1 ) .  

( 1 )  

The probability of k ones and n - k zeros occurring is 
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