181 research outputs found

    Preliminary study of Australian Pinot noir wines by colour and volatile analyses, and the Pivot© Profile method using wine professionals

    Get PDF
    The aim of this preliminary study was to identify potential colour components, volatile and sensory attributes that could discriminate Pinot noir wines from five Australian winegrowing regions (Adelaide Hills, Yarra Valley, Mornington Peninsula, Northern and Southern Tasmania). The sensory analysis consisted of the Pivot© Profile method that was performed by wine professionals. A headspace solid-phase microextraction-gas chromatography-mass spectrometry method was used to quantify multiple volatile compounds, while the Modified Somers method was used for colour characterisation. Analysis of data suggested ethyl decanoate, ethyl 2-methylpropanoate, ethyl 2-methylbutanoate, in addition to decanoic acid as important contributors to the discrimination between regions. Similarly, wine hue, chemical age indices, total anthocyanin, and (%) non-bleachable pigment also discriminated wines between regions. The sensory analysis showed that wines from Mornington Peninsula were associated with the ‘red fruits’ aroma, ‘acidic’, and ‘astringency’ palate descriptors, while those from Adelaide Hills were associated with the ‘brown’ colour attribute. This study indicates regionality is a strong driver of aroma typicity of wine

    Trimethoxylated halogenated chalcones as dual inhibitors of mao-b and bace-1 for the treatment of neurodegenerative disorders

    Get PDF
    Six halogenated trimethoxy chalcone derivatives (CH1–CH6) were synthesized and spec-trally characterized. The compounds were further evaluated for their inhibitory potential against monoamine oxidases (MAOs) and β-secretase (BACE-1). Six compounds inhibited MAO-B more effectively than MAO-A, and the 2′,3′,4′-methoxy moiety in CH4–CH6 was more effective for MAO-B inhibition than the 2′,4′,6′-methoxy moiety in CH1–CH3. Compound CH5 most potently inhibited MAO-B, with an IC50 value of 0.46 µM, followed by CH4 (IC50 = 0.84 µM). In 2′,3′,4′-methoxy derivatives (CH4-CH6), the order of inhibition was –Br in CH5 >-Cl in CH4 >-F in CH6 at the para-position in ring B of chalcone. CH4 and CH5 were selective for MAO-B, with selectivity index (SI) values of 15.1 and 31.3, respectively, over MAO-A. CH4 and CH5 moderately inhibited BACE-1 with IC50 values of 13.6 and 19.8 µM, respectively. When CH4 and CH5 were assessed for their cell viability studies on the normal African Green Monkey kidney cell line (VERO) using MTT assays, it was noted that both compounds were found to be safe, and only a slightly toxic effect was observed in concentrations above 200 µg/mL. CH4 and CH5 decreased reactive oxygen species (ROS) levels of VERO cells treated with H2 O2, indicating both compounds retained protective effects on the cells by antioxidant activities. All compounds showed high blood brain barrier permeabilities analyzed by a parallel artificial membrane permeability assay (PAMPA). Molecular docking and ADME prediction of the lead compounds provided more insights into the rationale behind the binding and the CNS drug likeness. From non-test mutagenicity and cardiotoxicity studies, CH4 and CH5 were non-mutagenic and non-/weak-cardiotoxic. These results suggest that CH4 and CH5 could be considered candidates for the cure of neurological dysfunctions

    Homobivalent Lamellarin-Like Schiff Bases: In Vitro Evaluation of Their Cancer Cell Cytotoxicity and Multitargeting Anti-Alzheimer's Disease Potential

    Get PDF
    Marine alkaloids belonging to the lamellarins family, which incorporate a 5,6-dihydro-1-phenylpyrrolo[2,1-a]isoquinoline (DHPPIQ) moiety, possess various biological activities, spanning from antiviral and antibiotic activities to cytotoxicity against tumor cells and the reversal of multidrug resistance. Expanding a series of previously reported imino adducts of DHPPIQ 2-carbaldehyde, novel aliphatic and aromatic Schiff bases were synthesized and evaluated herein for their cytotoxicity in five diverse tumor cell lines. Most of the newly synthesized compounds were found noncytotoxic in the low micromolar range (<30 μM). Based on a Multi-fingerprint Similarity Search aLgorithm (MuSSeL), mainly conceived for making protein drug target prediction, some DHPPIQ derivatives, especially bis-DHPPIQ Schiff bases linked by a phenylene bridge, were prioritized as potential hits addressing Alzheimer's disease-related target proteins, such as cholinesterases (ChEs) and monoamine oxidases (MAOs). In agreement with MuSSeL predictions, homobivalent para-phenylene DHPPIQ Schiff base 14 exhibited a noncompetitive/mixed inhibition of human acetylcholinesterase (AChE) with Ki in the low micromolar range (4.69 μM). Interestingly, besides a certain inhibition of MAO A (50% inhibition of the cell population growth (IC50) = 12 μM), the bis-DHPPIQ 14 showed a good inhibitory activity on self-induced β-amyloid (Aβ)1-40 aggregation (IC50 = 13 μM), which resulted 3.5-fold stronger than the respective mono-DHPPIQ Schiff base 9

    Structure-Based Design and Optimization of Multitarget-Directed 2H-Chromen-2-one Derivatives as Potent Inhibitors of Monoamine Oxidase B and Cholinesterases

    Get PDF
    The multifactorial nature of Alzheimer’s disease calls for the development of multitarget agents addressing key pathogenic processes. To this end, by following a docking-assisted hybridization strategy, a number of aminocoumarins were designed, prepared, and tested as monoamine oxidases (MAOs) and acetyl- and butyryl-cholinesterase (AChE and BChE) inhibitors. Highly flexible N-benzyl-N-alkyloxy coumarins 2–12 showed good inhibitory activities at MAO-B, AChE, and BChE but low selectivity. More rigid inhibitors, bearing meta- and para-xylyl linkers, displayed good inhibitory activities and high MAO-B selectivity. Compounds 21, 24, 37, and 39, the last two featuring an improved hydrophilic/lipophilic balance, exhibited excellent activity profiles with nanomolar inhibitory potency toward hMAO-B, high hMAO-B over hMAO-A selectivity and submicromolar potency at hAChE. Cell-based assays of BBB permeation, neurotoxicity, and neuroprotection supported the potential of compound 37 as a BBB-permeant neuroprotective agent against H2O2-induced oxidative stress with poor interaction as P-gp substrate and very low cytotoxicity

    Postoperative respiratory failure in liver transplantation: Risk factors and effect on prognosis

    Get PDF
    Background :Postoperative respiratory failure (PRF, namely mechanical ventilation >48 hours) significantly affects morbidity and mortality in liver transplantation (LTx). Previous studies analyzed only one or two categories of PRF risk factors (preoperative, intraoperative or postoperative ones). The aims of this study were to identify PRF predictors, to assess the length of stay (LoS) in ICU and the 90-day survival according to the PRF in LTx patients. Methods: Two classification approaches were used: systematic classification (recipient-related preoperative factors; intraoperative factors; logistic factors; donor factors; postoperative ICU factors; postoperative surgical factors) and patient/organ classification (patient-related general factors; native-liver factors; new-liver factors; kidney factors; heart factors; brain factors; lung factors). Two hundred adult non-acute patients were included. Missing analysis was performed. The competitive role of each factor was assessed. Results: PRF occurred in 36.0% of cases. Among 28 significant PRF predictors at univariate analysis, 6 were excluded because of collinearity, 22 were investigated by ROC curves and by logistic regression analysis. Recipient age (OR = 1.05; p = 0.010), female sex (OR = 2.75; p = 0.018), Model for End-Stage Liver Disease (MELD, OR = 1.09; p<0.001), restrictive lung pattern (OR = 2.49; p = 0.027), intraoperative veno-venous bypass (VVBP, OR = 3.03; p = 0.008), pre-extubation PaCO 2 (OR = 1.11; p = 0.003) and Model for Early Allograft Function (MEAF, OR = 1.37; p<0.001) resulted independent PRF risk factors. As compared to patients without PRF, the PRF-group had longer LoS (10 days IQR 7-18 versus 5 days IQR 4-7, respectively; p<0.001) and lower day-90 survival (86.0% versus 97.6% respectively, p<0.001). Conclusion: In conclusion, MELD, restrictive lung pattern, surgical complexity as captured by VVBP, pre-extubation PaCO 2 and MEAF are the main predictors of PRF in non-acute LTx patients

    Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health?

    Get PDF
    Like all other plants, trees are vulnerable to attack by a multitude of pests and pathogens. Current control measures for many of these diseases are limited and relatively ineffective. Several methods, including the use of conventional synthetic agro-chemicals, are employed to reduce the impact of pests and diseases. However, because of mounting concerns about adverse effects on the environment and a variety of economic reasons, this limited management of tree diseases by chemical methods is losing ground. The use of biological control, as a more environmentally friendly alternative, is becoming increasingly popular in plant protection. This can include the deployment of soil inoculants and foliar sprays, but the increased knowledge of microbial ecology in the phytosphere, in particular phylloplane microbes and endophytes, has stimulated new thinking for biocontrol approaches. Endophytes are microbes that live within plant tissues. As such, they hold potential as biocontrol agents against plant diseases because they are able to colonize the same ecological niche favoured by many invading pathogens. However, the development and exploitation of endophytes as biocontrol agents will have to overcome numerous challenges. The optimization and improvement of strategies employed in endophyte research can contribute towards discovering effective and competent biocontrol agents. The impact of environment and plant genotype on selecting potentially beneficial and exploitable endophytes for biocontrol is poorly understood. How endophytes synergise or antagonise one another is also an important factor. This review focusses on recent research addressing the biocontrol of plant diseases and pests using endophytic fungi and bacteria, alongside the challenges and limitations encountered and how these can be overcome. We frame this review in the context of tree pests and diseases, since trees are arguably the most difficult plant species to study, work on and manage, yet they represent one of the most important organisms on Earth

    Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project

    Get PDF
    Purpose: To describe the epidemiology of intra-abdominal infection in an international cohort of ICU patients according to a new system that classifies cases according to setting of infection acquisition (community-acquired, early onset hospital-acquired, and late-onset hospital-acquired), anatomical disruption (absent or present with localized or diffuse peritonitis), and severity of disease expression (infection, sepsis, and septic shock). Methods: We performed a multicenter (n = 309), observational, epidemiological study including adult ICU patients diagnosed with intra-abdominal infection. Risk factors for mortality were assessed by logistic regression analysis. Results: The cohort included 2621 patients. Setting of infection acquisition was community-acquired in 31.6%, early onset hospital-acquired in 25%, and late-onset hospital-acquired in 43.4% of patients. Overall prevalence of antimicrobial resistance was 26.3% and difficult-to-treat resistant Gram-negative bacteria 4.3%, with great variation according to geographic region. No difference in prevalence of antimicrobial resistance was observed according to setting of infection acquisition. Overall mortality was 29.1%. Independent risk factors for mortality included late-onset hospital-acquired infection, diffuse peritonitis, sepsis, septic shock, older age, malnutrition, liver failure, congestive heart failure, antimicrobial resistance (either methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing Gram-negative bacteria, or carbapenem-resistant Gram-negative bacteria) and source control failure evidenced by either the need for surgical revision or persistent inflammation. Conclusion: This multinational, heterogeneous cohort of ICU patients with intra-abdominal infection revealed that setting of infection acquisition, anatomical disruption, and severity of disease expression are disease-specific phenotypic characteristics associated with outcome, irrespective of the type of infection. Antimicrobial resistance is equally common in community-acquired as in hospital-acquired infection

    A Chemocentric Approach to the Identification of Cancer Targets

    Get PDF
    A novel chemocentric approach to identifying cancer-relevant targets is introduced. Starting with a large chemical collection, the strategy uses the list of small molecule hits arising from a differential cytotoxicity screening on tumor HCT116 and normal MRC-5 cell lines to identify proteins associated with cancer emerging from a differential virtual target profiling of the most selective compounds detected in both cell lines. It is shown that this smart combination of differential in vitro and in silico screenings (DIVISS) is capable of detecting a list of proteins that are already well accepted cancer drug targets, while complementing it with additional proteins that, targeted selectively or in combination with others, could lead to synergistic benefits for cancer therapeutics. The complete list of 115 proteins identified as being hit uniquely by compounds showing selective antiproliferative effects for tumor cell lines is provided
    corecore