499 research outputs found

    Rac1/WAVE2 and Cdc42/N-WASP Participation in Actin-Dependent Host Cell Invasion by Extracellular Amastigotes of Trypanosoma cruzi

    Get PDF
    This study evaluated the participation of host cell Rho-family GTPases and their effector proteins in the actin-dependent invasion by Trypanosoma cruzi extracellular amastigotes (EAs). We observed that all proteins were recruited and colocalized with actin at EA invasion sites in live or fixed cells. EA internalization was inhibited in cells depleted in Rac1, N-WASP, and WAVE2. Time-lapse experiments with Rac1, N-WASP and WAVE2 depleted cells revealed that EA internalization kinetics is delayed even though no differences were observed in the proportion of EA-induced actin recruitment in these groups. Overexpression of constitutively active constructs of Rac1 and RhoA altered the morphology of actin recruitments to EA invasion sites. Additionally, EA internalization was increased in cells overexpressing CA-Rac1 but inhibited in cells overexpressing CA-RhoA. WT-Cdc42 expression increased EA internalization, but curiously, CA-Cdc42 inhibited it. Altogether, these results corroborate the hypothesis of EA internalization in non-phagocytic cells by a phagocytosis-like mechanism and present Rac1 as the key Rho-family GTPase in this process.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cientifico e TecnologicoUniv Fed Sao Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, Sao Paulo, BrazilUniv Fed Sao Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, Sao Paulo, BrazilFAPESP: 2012/21335-8, 2011/51475-3CNPq: 302068/2016-3Web of Scienc

    Testing of four Leishmania vaccine candidates in a mouse model of infection with Leishmania (Viannia) braziliensis, the main causative agent of cutaneous leishmaniasis in the new world

    Get PDF
    We evaluated whether four recombinant antigens previously used for vaccination against experimental infection with Leishmania (Leishmania) major could also induce protective immunity against a challenge with Leishmania (Viannia) braziliensis, the species responsible for 90% of the 28,712 annual cases of cutaneous and mucocutaneous leishmaniasis recorded in Brazil during the year of 2004. Initially, we isolated the homolog genes encoding four L. (V.) braziliensis antigens: (i) homologue of receptor for activated C kinase, (ii) thiol-specific antioxidant, (iii) Leishmania elongation and initiation factor, and (iv) L. (L.) major stress-inducible protein 1. At the deduced amino acid level, all four open reading frames had a high degree of identity with the previously described genes of L. (L.) major being expressed on promastigotes and amastigotes of L. (V.) braziliensis. These genes were inserted into the vector pcDNA3 or expressed as bacterial recombinant proteins. After immunization with recombinant plasmids or proteins, BALB/c mice generated specific antibody or cell-mediated immune responses (gamma interferon production). After an intradermal challenge with L. (V.) braziliensis infective promastigotes, no significant reduction on the lesions was detected. We conclude that the protective immunity afforded by these four vaccine candidates against experimental cutaneous leishmaniasis caused by L. (L.) major could not be reproduced against a challenge with L. (V.) braziliensis. Although negative, we consider our results important since they suggest that studies aimed at the development of an effective vaccine against L. (V.) braziliensis, the main causative agent of cutaneous leishmaniasis in the New World, should be redirected toward distinct antigens or different vaccination strategies.UNIFESP EPM, CINTERGEN Ctr Interdisciplinar Terapia Gen, BR-04044010 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol Parasitol, Disciplina Parasitol, BR-04023062 São Paulo, BrazilFdn Oswaldo Crus, Ctr Pesquisas Goncalo Moniz, BR-40295001 Salvador, BA, BrazilUniv Fed Gouania, Dept Microbiol Imunono & Parasitol, Disciplina Imunol, Goiania, Go, BrazilUniv Fed Bahia, Inst Ciencias Saude, Dept Biointeracao, BR-40110160 Salvador, BA, BrazilUNIFESP EPM, CINTERGEN Ctr Interdisciplinar Terapia Gen, BR-04044010 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol Parasitol, Disciplina Parasitol, BR-04023062 São Paulo, BrazilWeb of Scienc

    Amastigote Synapse: The Tricks of Trypanosoma cruzi Extracellular Amastigotes

    Get PDF
    To complete its life cycle within the mammalian host, Trypanosoma cruzi, the agent of Chagas’ disease, must enter cells. Trypomastigotes originating from the insect vector (metacyclic) or from infected cells (bloodstream/tissue culture-derived) are the classical infective forms of the parasite and enter mammalian cells in an actin-independent manner. By contrast, amastigotes originating from the premature rupture of infected cells or transformed from swimming trypomastigotes (designated extracellular amastigotes, EAs) require functional intact microfilaments to invade non-phagocytic host cells. Earlier work disclosed the key features of EA-HeLa cell interplay: actin-rich protrusions called ‘cups’ are formed at EA invasion sites on the host cell membrane that are also enriched in actin-binding proteins, integrins and extracellular matrix elements. In the past decades we described the participation of membrane components and secreted factors from EAs as well as the actin-regulating proteins of host cells involved in what we propose to be a phagocytic-like mechanism of parasite uptake. Thus, regarding this new perspective herein we present previously described EA-induced ‘cups’ as parasitic synapse since they can play a role beyond its architecture function. In this review, we focus on recent findings that shed light on the intricate interaction between extracellular amastigotes and non-phagocytic HeLa cells

    Protocol of a scoping review assessing injury rates and their determinants among healthcare workers in western countries

    Get PDF
    Introduction Healthcare workers (HCWs) are exposed to various risk factors and risky behaviours that may seriously affect their health and ability to work. The aim of this protocol is to detail the steps to follow in order to carry out a scoping review to assess the prevalence/incidence of injuries among HCWs. Methods and analysis The study will be carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses-Protocols guidelines. Studies will be selected according to the following criteria: P (HCWs), E (exposure to injuries), C (different types of exposure and different categories of HCWs) and O (prevalence/incidence and determinants of injuries). A time filter has been set (literature between 2000 and 2018) to enable updated, direct comparison between the findings and the epidemiological data available at national and local \u20acIstituto Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro' (National Institute for Insurance Against Accidents at Work) centres in Italy. No language restriction will be applied. Ethics and dissemination Formal ethical approval is not required; primary data will not be collected, as they have already been published. The results will be disseminated through peer-reviewed publication(s), conference presentation(s) and the press

    Parasite-mediated remodeling of the host microfilament cytoskeleton enables rapid egress of Trypanosoma cruzi following membrane rupture

    Get PDF
    Chagas’ disease arises as a direct consequence of the lytic cycle of Trypanosoma cruzi in the mammalian host. While invasion is well studied for this patho-gen, study of egress has been largely neglected. Here, we provide the first description of T. cruzi egress documenting a coordinated mechanism by which T. cruzi engineers its escape from host cells in which it has proliferated and which is essential for mainte-nance of infection and pathogenesis. Our results indicate that this parasite egress is a sudden event involving coordinated remodeling of host cell cytoskeleton and subsequent rupture of host cell plasma membrane. We document that host cells maintain plasma membrane integrity until immediately prior to parasite release and report the sequential transformation of the host cell’s actin cytoskeleton from normal meshwork in noninfected cells to spheroidal cages—a process initiated shortly after amastigogenesis. Quantification revealed gradual reduction in F-actin over the course of infection, and using cytoskeletal preparations and electron microscopy, we were able to observe disruption of the F-actin proximal to intracellular trypomastigotes. Finally, Western blotting experiments suggest actin degradation driven by parasite proteases, suggesting that degradation of cytoskeleton is a principal component controlling the initiation of egress. Our results provide the first description of the cellular mechanism that regulates the lytic component of the T. cruzi lytic cycle. We show graphically how it is possible to pre-serve the envelope of host cell plasma membrane during intracellular proliferation of the parasite and how, in cells packed with amastigotes, differentiation into trypomasti-gotes may trigger sudden egress
    corecore