3,043 research outputs found

    Massive relativistic particle model with spin from free two-twistor dynamics and its quantization

    Full text link
    We consider a relativistic particle model in an enlarged relativistic phase space M^{18} = (X_\mu, P_\mu, \eta_\alpha, \oeta_\dalpha, \sigma_\alpha, \osigma_\dalpha, e, \phi), which is derived from the free two-twistor dynamics. The spin sector variables (\eta_\alpha, \oeta_\dalpha, \sigma_\alpha,\ osigma_\dalpha) satisfy two second class constraints and account for the relativistic spin structure, and the pair (e,\phi) describes the electric charge sector. After introducing the Liouville one-form on M^{18}, derived by a non-linear transformation of the canonical Liouville one-form on the two-twistor space, we analyze the dynamics described by the first and second class constraints. We use a composite orthogonal basis in four-momentum space to obtain the scalars defining the invariant spin projections. The first-quantized theory provides a consistent set of wave equations, determining the mass, spin, invariant spin projection and electric charge of the relativistic particle. The wavefunction provides a generating functional for free, massive higher spin fields.Comment: FTUV-05-0919, IFIC-05-46, IFT UWr 0110/05. Plain latex file, no macros, 22 pages. A comment and references added. To appear in PRD1

    Quantum computing of quantum chaos and imperfection effects

    Full text link
    We study numerically the imperfection effects in the quantum computing of the kicked rotator model in the regime of quantum chaos. It is shown that there are two types of physical characteristics: for one of them the quantum computation errors grow exponentially with the number of qubits in the computer while for the other the growth is polynomial. Certain similarity between classical and quantum computing errors is also discussed.Comment: revtex, 4 pages, 4 figure

    Quantum Computing of Classical Chaos: Smile of the Arnold-Schrodinger Cat

    Get PDF
    We show on the example of the Arnold cat map that classical chaotic systems can be simulated with exponential efficiency on a quantum computer. Although classical computer errors grow exponentially with time, the quantum algorithm with moderate imperfections is able to simulate accurately the unstable chaotic classical dynamics for long times. The algorithm can be easily implemented on systems of a few qubits.Comment: revtex, 4 pages, 4 figure

    Dissipative effects on quantum glassy systems

    Full text link
    We discuss the behavior of a quantum glassy system coupled to a bath of quantum oscillators. We show that the system localizes in the absence of interactions when coupled to a subOhmic bath. When interactions are switched on localization disappears and the system undergoes a phase transition towards a glassy phase. We show that the position of the critical line separating the disordered and the ordered phases strongly depends on the coupling to the bath. For a given type of bath, the ordered glassy phase is favored by a stronger coupling. Ohmic, subOhmic and superOhmic baths lead to different transition lines. We draw our conclusions from the analysis of the partition function using the replicated imaginary-time formalism and from the study of the real-time dynamics of the coupled system using the Schwinger-Keldysh closed time-path formalism.Comment: 39 pages, 13 figures, RevTe

    Efficient Quantum Computing of Complex Dynamics

    Get PDF
    We propose a quantum algorithm which uses the number of qubits in an optimal way and efficiently simulates a physical model with rich and complex dynamics described by the quantum sawtooth map. The numerical study of the effect of static imperfections in the quantum computer hardware shows that the main elements of the phase space structures are accurately reproduced up to a time scale which is polynomial in the number of qubits. The errors generated by these imperfections are more dangerous than the errors of random noise in gate operations.Comment: revtex, 4 pages, 3 figure

    Quantum Computing of Quantum Chaos in the Kicked Rotator Model

    Get PDF
    We investigate a quantum algorithm which simulates efficiently the quantum kicked rotator model, a system which displays rich physical properties, and enables to study problems of quantum chaos, atomic physics and localization of electrons in solids. The effects of errors in gate operations are tested on this algorithm in numerical simulations with up to 20 qubits. In this way various physical quantities are investigated. Some of them, such as second moment of probability distribution and tunneling transitions through invariant curves are shown to be particularly sensitive to errors. However, investigations of the fidelity and Wigner and Husimi distributions show that these physical quantities are robust in presence of imperfections. This implies that the algorithm can simulate the dynamics of quantum chaos in presence of a moderate amount of noise.Comment: research at Quantware MIPS Center http://www.quantware.ups-tlse.fr, revtex 11 pages, 13 figs, 2 figs and discussion adde

    Quantum computing and information extraction for a dynamical quantum system

    Full text link
    We discuss the simulation of a complex dynamical system, the so-called quantum sawtooth map model, on a quantum computer. We show that a quantum computer can be used to efficiently extract relevant physical information for this model. It is possible to simulate the dynamical localization of classical chaos and extract the localization length of the system with quadratic speed up with respect to any known classical computation. We can also compute with algebraic speed up the diffusion coefficient and the diffusion exponent both in the regimes of Brownian and anomalous diffusion. Finally, we show that it is possible to extract the fidelity of the quantum motion, which measures the stability of the system under perturbations, with exponential speed up.Comment: 11 pages, 5 figures, submitted to Quantum Information Processing, Special Issue devoted to the Physics of Quantum Computin

    Quantum computation with linear optics

    Full text link
    We present a constructive method to translate small quantum circuits into their optical analogues, using linear components of present-day quantum optics technology only. These optical circuits perform precisely the computation that the quantum circuits are designed for, and can thus be used to test the performance of quantum algorithms. The method relies on the representation of several quantum bits by a single photon, and on the implementation of universal quantum gates using simple optical components (beam splitters, phase shifters, etc.). The optical implementation of Brassard et al.'s teleportation circuit, a non-trivial 3-bit quantum computation, is presented as an illustration.Comment: LaTeX with llncs.cls, 11 pages with 5 postscript figures, Proc. of 1st NASA Workshop on Quantum Computation and Quantum Communication (QCQC 98

    Quantum computers in phase space

    Full text link
    We represent both the states and the evolution of a quantum computer in phase space using the discrete Wigner function. We study properties of the phase space representation of quantum algorithms: apart from analyzing important examples, such as the Fourier Transform and Grover's search, we examine the conditions for the existence of a direct correspondence between quantum and classical evolutions in phase space. Finally, we describe how to directly measure the Wigner function in a given phase space point by means of a tomographic method that, itself, can be interpreted as a simple quantum algorithm.Comment: 16 pages, 7 figures, to appear in Phys Rev

    Semliki Forest virus induced, immune mediated demyelination: the effect of irradiation

    Get PDF
    International audienceThe Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey (DES). The SV footprint covers a large portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 mag fainter than the main sequence turn-off of the oldest LMC stellar population. We derive geometrical and structural parameters for various stellar populations in the LMC disc. For the distribution of all LMC stars, we find an inclination of i = -38.14° ± 0.08° (near side in the north) and a position angle for the line of nodes of Ξ0 = 129.51° ± 0.17°. We find that stars younger than ∌4 Gyr are more centrally concentrated than older stars. Fitting a projected exponential disc shows that the scale radius of the old populations is R>4 Gyr = 1.41 ± 0.01 kpc, while the younger population has R = 0.72 ± 0.01 kpc. However, the spatial distribution of the younger population deviates significantly from the projected exponential disc model. The distribution of old stars suggests a large truncation radius of Rt = 13.5 ± 0.8 kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC is {∌eq } 24^{+9}_{-6} times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fitting LMC disc model, we find that the LMC disc is warped and thicker in the outer regions north of the LMC centre. Our findings may either be interpreted as a warped and flared disc in the LMC outskirts, or as evidence of a spheroidal halo component
    • 

    corecore