82 research outputs found

    Role of sex and stature on the biomechanics of normal and loaded walking : implications for injury risk in the military

    Get PDF
    Load carriage and marching ‘in-step’ are routine military activities associated with lower limb injury risk in service personnel. The fixed pace and stride length of marching typically vary from the preferred walking gait and may result in overstriding. Overstriding increases ground reaction forces and muscle forces. Women are more likely to overstride than men due to their shorter stature. These biomechanical responses to overstriding may be most pronounced when marching close to the preferred walk-to-run transition speed. Load carriage also affects walking gait and increases ground reaction forces, joint moments and the demands on the muscles. Few studies have examined the effects of sex and stature on the biomechanics of marching and load carriage; this evidence is required to inform injury prevention strategies, particularly with the full integration of women in some defence forces. This narrative review explores the effects of sex and stature on the biomechanics of unloaded and loaded marching at a fixed pace and evaluates the implications for injury risk. The knowledge gaps in the literature, and distinct lack of studies on women, are highlighted, and areas that need more research to support evidence-based injury prevention measures, especially for women in arduous military roles, are identified

    Distal Tibial Bone Properties and Bone Stress Injury Risk in Young Men Undergoing Arduous Physical Training.

    Get PDF
    Trabecular microarchitecture contributes to bone strength, but its role in bone stress injury (BSI) risk in young healthy adults is unclear. Tibial volumetric BMD (vBMD), geometry, and microarchitecture, whole-body areal BMD, lean and fat mass, biochemical markers of bone metabolism, aerobic fitness, and muscle strength and power were measured in 201 British Army male infantry recruits (age 20.7 [4.3] years, BMI 24.0 ± 2.7 kg·m2) in week one of basic training. Tibial scans were performed at the ultra-distal site, 22.5 mm from the distal endplate of the non-dominant leg using High Resolution Peripheral Quantitative Computed Tomography (XtremeCT, Scanco Medical AG, Switzerland). Binary logistic regression analysis was performed to identify associations with lower body BSI confirmed by MRI. 20 recruits (10.0%) were diagnosed with a lower body BSI. Pre-injured participants had lower cortical area, stiffness and estimated failure load (p = 0.029, 0.012 and 0.011 respectively) but tibial vBMD, geometry, and microarchitecture were not associated with BSI incidence when controlling for age, total body mass, lean body mass, height, total 25(OH)D, 2.4-km run time, peak power output and maximum dynamic lift strength. Infantry Regiment (OR 9.3 [95%CI, 2.6, 33.4]) Parachute versus Line Infantry, (p ≤ 0.001) and 2.4-km best effort run time (1.06 [95%CI, 1.02, 1.10], p < 0.033) were significant predictors. Intrinsic risk factors, including ultradistal tibial density, geometry, and microarchitecture, were not associated with lower body BSI during arduous infantry training. The ninefold increased risk of BSI in the Parachute Regiment compared with Line Infantry suggests that injury propensity is primarily a function of training load and risk factors are population-specific

    Functional polymorphisms in the P2X7 receptor gene are associated with stress fracture injury

    Get PDF
    Context: Military recruits and elite athletes are susceptible to stress fracture injuries. Genetic predisposition has been postulated to have a role in their development. The P2X7 receptor (P2X7R) gene, a key regulator of bone remodelling, is a genetic candidate that may contribute to stress fracture predisposition. Objective: To evaluate the putative contribution of P2X7R to stress fracture injury in two separate cohorts, military personnel and elite athletes. Methods: In 210 Israeli Defence Forces (IDF) military conscripts, stress fracture injury was diagnosed (n=43) based on symptoms and a positive bone scan. In a separate cohort of 518 elite athletes, self-reported medical imaging scan-certified stress fracture injuries were recorded (n=125). Non-stress fracture controls were identified from these cohorts who had a normal bone scan or no history or symptoms of stress fracture injury. Study participants were genotyped for functional SNPs within the P2X7R gene using proprietary fluorescence-based competitive allele-specific PCR assay. Pearson Chi-square (χ2) tests, corrected for multiple comparisons, were used to assess associations in genotype frequencies. Results: The variant allele of P2X7R SNP rs3751143 (Glu496Ala- loss of function) was associated with stress fracture injury, while the variant allele of rs1718119 (Ala348Thr- gain of function) was associated with a reduced occurrence of stress fracture injury in military conscripts (P<0.05). The association of the variant allele of rs3751143 with stress fractures was replicated in elite athletes (P<0.05), whereas the variant allele of rs1718119 was also associated with reduced multiple stress fracture cases in elite athletes (P<0.05). Conclusions: The association between independent P2X7R polymorphisms with stress fracture prevalence supports the role of a genetic predisposition in the development of stress fracture injury

    How ‘STRONG’ is the British Army?

    Get PDF
    One of six research themes outlined in the 2021 Strategic Delivery Plan for UK Defence Medical Services (DMS) Research 2021–2026 is ‘preventing and treating musculoskeletal injury (MSKI)’.1 The research priorities identified include: ‘injury prevention and prehabilitation’, ‘lower-limb injury’, ‘shortened time to return-to-service’ and ‘physical comorbidity’. The strategic development plan also identified a need for research investigating ‘factors affecting deployment suitability and how they can be assessed and mitigated’. . .

    Predicting prescribed magnification

    Get PDF
    Aim: To determine the best method of estimating the optimum magnification needed by visually impaired patients. Methods: The magnification of low vision aids prescribed to 187 presbyopic visually impaired patients for reading newspapers or books was compared with logMAR distance and near acuity (at 25 cm) and magnification predicted by +4 D step near additions. Results: Distance letter (r = 0.58) and near word visual acuity (r = 0.67) were strongly correlated to the prescribed magnification as were predictive formulae based on these measures. Prediction using the effect of proximal magnification resulted in a similar correlation (r = 0.67) and prediction was poorer in those who did not benefit from proximal magnification. The difference between prescribed and predicted magnification was found to be unrelated to the condition causing visual impairment (F = 2.57, p = 0.08), the central visual field status (F = 0.57, p = 0.57) and patient psychology (F = 0.44, p = 0.51), but was higher in those prescribed stand magnifiers than high near additions (F = 5.99, p < 0.01). Conclusions: The magnification necessary to perform normal visual tasks can be predicted in the majority of cases using visual acuity measures, although measuring the effect of proximal magnification demonstrates the effect of stronger glasses and identifies those in whom prescribed magnification is more difficult to predict

    Validity of energy expenditure estimation methods during 10 days of military training

    Get PDF
    Wearable physical activity (PA) monitors have improved the ability to estimate free-living total energy expenditure (TEE) but their application during arduous military training alongside more well-established research methods has not been widely documented. This study aimed to assess the validity of two wrist-worn activity monitors and a PA log against doubly-labelled water (DLW) during British Army Officer Cadet (OC) training. For 10 days of training, twenty (10 male and 10 female) OCs (mean ± SD: age 23 ± 2 years, height 1.74 ± 0.09 m, body mass 77.0 ± 9.3 kg) wore one research-grade accelerometer (GENEActiv, Cambridge, UK) on the dominant wrist, wore one commercially-available monitor (Fitbit SURGE, USA) on the non-dominant wrist and completed a self-report PA log. Immediately prior to this 10-day period, participants consumed a bolus of DLW and provided daily urine samples, which were analysed by mass spectrometry to determine TEE. Bivariate correlations and limits of agreement (LoA) were employed to compare TEE from each estimation method to DLW. Average daily TEE from DLW was 4112 ± 652 kcal·day against which the GENEActiv showed near identical average TEE (mean bias ± LoA: -15 ± 851 kcal day ) while Fitbit tended to underestimate (-656 ± 683 kcal·day ) and the PA log substantially overestimate (+1946 ± 1637 kcal·day ). Wearable physical activity monitors provide a cheaper and more practical method for estimating free-living TEE than DLW in military settings. The GENEActiv accelerometer demonstrated good validity for assessing daily TEE and would appear suitable for use in large-scale, longitudinal military studies

    Female reproductive, adrenal and metabolic changes during an Antarctic traverse

    Get PDF
    Purpose To explore the effects of the first all-female transantarctic expedition on hormonal axes pertinent to reproductive and metabolic function. Methods Six females (age, 28–36 yr; body mass index, 24.2 ± 0.97 kg·m−2) hauled 80-kg sledges 1700 km in 61 d. Estimated average energy intake was 20.8 ± 0.1 MJ·d−1 (4970 ± 25 kcal·d−1). Whole and regional body composition was measured by dual-energy x-ray absorptiometry 1 and 2 months before and 15 d after, the expedition. Body fat was also estimated by skinfold and bioimpedance immediately before and after the expedition. Basal metabolic and endocrine blood markers and, after 0.25 mg dexamethasone suppression, 1-h 10-μg gonadorelin and 1.0 μg adrenocortiocotrophin-(1–24) tests were completed, 39–38 d preexpedition and 4 to 5 d and 15 to 16 d postexpedition. Cortisol was assessed in hair (monthly average concentrations) and saliva (five-point day curves and two-point diurnal sampling). Results Average body mass loss was 9.37 ± 2.31 kg (P < 0.0001), comprising fat mass only; total lean mass was maintained. Basal sex steroids, corticosteroids, and metabolic markers were largely unaffected by the expedition except leptin, which decreased during the expedition and recovered after 15 d, a proportionately greater change than body fat. Luteinizing hormone reactivity was suppressed before and during the expedition, but recovered after 15 d, whereas follicle-stimulating hormone did not change during or after the expedition. Cortisol reactivity did not change during or after the expedition. Basal (suppressed) cortisol was 73.25 ± 45.23 mmol·L−1 before, 61.66 ± 33.11 mmol·L−1 5 d postexpedition and 54.43 ± 28.60 mmol·L−1 16 d postexpedition (P = 0.7). Hair cortisol was elevated during the expedition. Conclusions Maintenance of reproductive and hypothalamic-pituitary-adrenal axis function in women after an extreme physical endeavor, despite energy deficiency, suggests high female biological capacity for extreme endurance exercise

    Validation of dried blood spot sampling for detecting SARS-CoV-2 antibodies and total immunoglobulins in a large cohort of asymptomatic young adults

    Get PDF
    Background Detecting antibody responses following infection with SARS-CoV-2 is necessary for sero-epidemiological studies and assessing the role of specific antibodies in disease, but serum or plasma sampling is not always viable due to logistical challenges. Dried blood spot sampling (DBS) is a cheaper, simpler alternative and samples can be self-collected and returned by post, reducing risk for SARS-CoV-2 exposure from direct patient contact. The value of large-scale DBS sampling for the assessment of serological responses to SARS-CoV-2 has not been assessed in depth and provides a model for examining the logistics of using this approach to other infectious diseases. The ability to measure specific antigens is attractive for remote outbreak situations where testing may be limited or for patients who require sampling after remote consultation. Methods We compared the performance of SARS-CoV-2 anti-spike and anti-nucleocapsid antibody detection from DBS samples with matched serum collected by venepuncture in a large population of asymptomatic young adults (N = 1070) living and working in congregate settings (military recruits, N = 625); university students, N = 445). We also compared the effect of self-sampling (ssDBS) with investigator-collected samples (labDBS) on assay performance, and the quantitative measurement of total IgA, IgG and IgM between DBS eluates and serum. Results Baseline seropositivity for anti-spike IgGAM antibody was significantly higher among university students than military recruits. Strong correlations were observed between matched DBS and serum samples in both university students and recruits for the anti-spike IgGAM assay. Minimal differences were found in results by ssDBS and labDBS and serum by Bland Altman and Cohen kappa analyses. LabDBS achieved 82.0% sensitivity and 98.2% specificity and ssDBS samples 86.1% sensitivity and 96.7% specificity for detecting anti-spike IgGAM antibodies relative to serum samples. For anti-SARS-CoV-2 nucleocapsid IgG there was qualitatively 100% agreement between serum and DBS samples and weak correlation in ratio measurements. Strong correlations were observed between serum and DBS-derived total IgG, IgA, and IgM. Conclusions This is the largest validation of DBS against paired serum for SARS-CoV-2 specific antibody measurement and we have shown that DBS retains performance from prior smaller studies. There were no significant differences regarding DBS collection methods, suggesting that self-collected samples are a viable sampling collection method. These data offer confidence that DBS can be employed more widely as an alternative to classical serology

    Nutrition and Physical Activity during British Army Officer Cadet Training: Part 1 - Energy Balance and Energy Availability

    Get PDF
    Military training is characterised by high daily energy expenditures (EE) which are difficult to match with energy intake (EI) potentially resulting in negative energy balance (EB) and low energy availability (EA). The aim of this study was to quantify EB and EA during British Army Officer Cadet (OC) training. Thirteen (seven women) OCs (mean ± SD: age 24 ± 3 years) volunteered to participate. EB and EA were estimated from EI (weighing of food and food diaries) and EE (doubly-labelled water) measured in three periods of training; nine days on-camp (CAMP), a five-day field exercise (FEX) and a nine-day mixture of both (MIX). Variables were compared by condition and gender with a repeated measures ANOVA. Negative EB was greatest during FEX (-2197 ± 455 kcal·d-1) compared with CAMP (-692 ± 506 kcal·d-1; p<0.001) and MIX (-1280 ± 309 kcal·d-1; p<0.001). EA was greatest in CAMP (23 ± 10 kcal·d-1) compared with FEX (1 ± 16 kcal·d-1; p=0.002) and MIX (10 ± 7 kcal·d-1; p=0.003), with no apparent difference between FEX and MIX (p=0.071). Irrespective of condition, there were no apparent differences between gender in EB (p=0.375) or EA (p=0.385). These data can be used to inform evidenced-based strategies to manage EA and EB during military training and enhance the health and performance of military personnel

    Efficacy of tibolone and raloxifene for the maintenance of skeletal muscle strength, bone mineral density, balance, body composition, cognitive function, mood/depression, anxiety and quality of life/well-being in late postmenopausal women ≥ 70 years: Study design of a randomized, double-blind, double-dummy, placebo-controlled, single-center trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Postmenopausal women are prone to develop functional disabilities as a result of reduction in muscle strength and muscle mass caused by diminished levels of female sex hormones. While hormone replacement therapy may counteract these changes, conventional hormone replacement therapy is associated with potential harmful effects, such as an increased risk of breast cancer, and its prescription is not recommended. For this reason newer alternative drugs, such as tibolone, a synthetic steroid with estrogenic, progestogenic and androgenic activity, and raloxifene, a selective estrogen receptor modulator, may be more appropriate. This trial investigates the effect of tibolone and raloxifene on muscle strength.</p> <p>Methods</p> <p>We recruited 318 elderly women in our single-center randomized, double-blind, double-dummy, placebo-controlled trial. Participants were randomized to tibolone 1.25 mg (Org OD 14, Organon NV, the Netherlands) plus placebo, raloxifene 60 mg (Evista<sup>®</sup>, Eli Lilly, United States) plus placebo or two placebo tablets daily for 24 months.</p> <p>The primary aim is to determine if there is a difference between tibolone and placebo or if there is a difference between raloxifene and placebo. Primary endpoints are muscle strength and bone mineral density. The secondary endpoints are postural balance, body composition, cognitive function, anxiety, mood and quality of life. The secondary aim is to determine if there is a difference between tibolone and raloxifene.</p> <p>The measure of effect is the change from the baseline visit to the visits after 3 months, 6 months, 12 months, and 24 months. A follow-up measurement is planned at 30 months to determine whether any effects are sustained after cessation of the study. By December 2007 the blind will be broken and the data analyzed.</p> <p>Trial registration number</p> <p>NTR: 1232</p
    • …
    corecore