1,583 research outputs found
Study in optimization of microcircuit design Final report
Optimization of microcircuit reliabilit
Spin torque, tunnel-current spin polarization and magnetoresistance in MgO magnetic tunnel junctions
We examine the spin torque (ST) response of magnetic tunnel junctions (MTJs)
with ultra-thin MgO tunnel barrier layers to investigate the relationship
between the spin-transfer torque and the tunnel magnetoresistance (TMR) under
finite bias. We find that the spin torque per unit current exerted on the free
layer decreases by less than 10% over a bias range where the TMR decreases by
over 40%. We examine the implications of this result for various spin-polarized
tunneling models and find that it is consistent with magnetic-state-dependent
effective tunnel decay lengths.Comment: 4 pages, 3 figure
Development of integrated thermionic circuits for high-temperature applications
Integrated thermionic circuits (ITC) capable of extended operation in ambient temperatures up to 500 C are studied. A set of practical design and performance equations is demonstrated. Experimental results are discussed in which both devices and simple circuits were successfully operated in 5000 C environments for extended periods. It is suggested that ITC's may become an important technology for high temperature instrumentation and control systems in geothermal and other high temperature environments
Distinguishing left- and right-handed molecules by two-step coherent pulses
Chiral molecules with broken parity symmetries can be modeled as quantum
systems with cyclic-transition structures. By using these novel properties, we
design two-step laser pulses to distinguish left- and right-handed molecules
from the enantiomers. After the applied pulse drivings, one kind chiral
molecules are trapped in coherent population trapping state, while the other
ones are pumped to the highest states for ionizations. Then, different chiral
molecules can be separated.Comment: 11 pages, 3 figures
Scaling metagenome sequence assembly with probabilistic de Bruijn graphs
Deep sequencing has enabled the investigation of a wide range of
environmental microbial ecosystems, but the high memory requirements for {\em
de novo} assembly of short-read shotgun sequencing data from these complex
populations are an increasingly large practical barrier. Here we introduce a
memory-efficient graph representation with which we can analyze the k-mer
connectivity of metagenomic samples. The graph representation is based on a
probabilistic data structure, a Bloom filter, that allows us to efficiently
store assembly graphs in as little as 4 bits per k-mer, albeit inexactly. We
show that this data structure accurately represents DNA assembly graphs in low
memory. We apply this data structure to the problem of partitioning assembly
graphs into components as a prelude to assembly, and show that this reduces the
overall memory requirements for {\em de novo} assembly of metagenomes. On one
soil metagenome assembly, this approach achieves a nearly 40-fold decrease in
the maximum memory requirements for assembly. This probabilistic graph
representation is a significant theoretical advance in storing assembly graphs
and also yields immediate leverage on metagenomic assembly
The Missouri soil saving dam : low-cost structure for use in farm plans for water management
Cover title."A revision of Bulletin 434" -- P. [3]
Sums of two squares and a power
We extend results of Jagy and Kaplansky and the present authors and show that
for all there are infinitely many positive integers , which cannot
be written as for positive integers , where for
a congruence condition is imposed on . These
examples are of interest as there is no congruence obstruction itself for the
representation of these . This way we provide a new family of
counterexamples to the Hasse principle or strong approximation.Comment: 6 pages, to appear in the memorial volume "From Arithmetic to
Zeta-Functions - Number Theory in Memory of Wolfgang Schwarz
- …
