6,717 research outputs found

    Two-Parton Contribution to the Heavy-Quark Forward-Backward Asymmetry in NNLO QCD

    Full text link
    Forward-backward asymmetries, AFBQA_{FB}^Q, are important observables for the determination of the neutral-current couplings of heavy quarks in inclusive heavy quark production, e+e−→γ∗,Z∗→Q+Xe^+ e^- \to \gamma^*, Z^* \to Q +X. In view of the measurement perspectives on AFBQA_{FB}^Q at a future linear collider, precise predictions of AFBQA_{FB}^Q are required for massive quarks. We compute the contribution of the QQˉQ \bar Q final state to AFBQA_{FB}^Q to order \as^2 in the QCD coupling. We provide general formulae, and we show that this contribution to AFBQA_{FB}^Q is infrared-finite. We evaluate these two-parton contributions for bb and cc quarks on and near the ZZ resonance, and for tt quarks above threshold. Moreover, near the ttˉt \bar t threshold we obtain, by expanding in the heavy-quark velocity β\beta, an expression for AFBttˉA_{FB}^{t \bar t} to order \as^2 and NNLL in β\beta. This quantity is equal, to this order in β\beta, to the complete forward-backward asymmetry AFBtA_{FB}^t.Comment: latex, 26 pages, 2 tables, 17 figure

    QCD corrections to the forward-backward asymmetries of cc and bb quarks at the Z pole

    Get PDF
    Measurements of the forward-backward production asymmetry of heavy quarks in Z decays provide a precise determination of \swsqeffl . The asymmetries are sensitive to QCD effects, in particular hard gluon radiation. In this paper QCD corrections for \AFBbb~ and \AFBcc~ are discussed. The interplay between the experimental techniques used to measure the asymmetries and the QCD effects is investigated using simulated events. A procedure to estimate the correction needed for experimental measurements is proposed, and some specific examples are given

    Top quark physics in hadron collisions

    Full text link
    The top quark is the heaviest elementary particle observed to date. Its large mass makes the top quark an ideal laboratory to test predictions of perturbation theory concerning heavy quark production at hadron colliders. The top quark is also a powerful probe for new phenomena beyond the Standard Model of particle physics. In addition, the top quark mass is a crucial parameter for scrutinizing the Standard Model in electroweak precision tests and for predicting the mass of the yet unobserved Higgs boson. Ten years after the discovery of the top quark at the Fermilab Tevatron top quark physics has entered an era where detailed measurements of top quark properties are undertaken. In this review article an introduction to the phenomenology of top quark production in hadron collisions is given, the lessons learned in Tevatron Run I are summarized, and first Run II results are discussed. A brief outlook to the possibilities of top quark research a the Large Hadron Collider, currently under construction at CERN, is included.Comment: 84 pages, 32 figures, accepted for publication by Reports on Progress in Physic

    Massive Elementary Particles and Black Holes

    Full text link
    An outstanding problem posed by Einstein's general theory of relativity to the quantum theory of point particle fields is the fate of a massive point particle; for, in the classical solutions of Einstein's theory, such a system should be a black hole. We use exact results in a new approach to quantum gravity to show that this conclusion is obviated by quantum loop effects. Phenomenological implications are discussedComment: 11 pages; 1 figure; improved text relating to asymptotic safet

    Quality control for the first large areas of triple-GEM chambers for the CMS endcaps

    Get PDF
    The CMS Collaboration plans to equip the very forward muon system with triple-GEM detectors that can withstand the environment of the High-Luminosity LHC.This project is at the final stages of R&D and moving to production. A large area of several 100 m 2 are to be instrumented with GEM detectors which will be produced in six different sites around the world. A common construction and quality control procedure is required to ensure the performance of each detector.The quality control steps will include optical inspection,cleaning and baking of all materials and parts used to build the detector,leakage current tests of the GEM foils,high voltage tests,gas leak tests of the chambers and monitoring pressures time,gain calibration to know the optimal operation region of the detector,gain uniformity tests, and studying the efficiency,noise and tracking performance of the detectors in a cosmic stand using scintillator

    An overview of the design, construction and performance of large area triple-GEM prototypes for future upgrades of the CMS forward muon system

    Get PDF
    GEM detectors are used in high energy physics experiments given their good spatial resolution, high rate capability and radiation hardness. An international collaboration is investigating the possibility of covering the 1.6 < vertical bar eta vertical bar < 2.4 region of the CMS muon endcaps with large-area triple-GEM detectors. The CMS high-eta area is actually not fully instrumented, only Cathode Strip Chamber (CSC) are installed. The vacant area presents an opportunity for a detector technology able to to cope with the harsh radiation environment; these micropattern gas detectors are an appealing option to simultaneously enhance muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study is presented. Design and construction of small (10cm x 10cm) and full-size trapezoidal (1m x 0.5m) triple-GEM prototypes is described. Results from measurements with x-rays and from test beam campaigns at the CERN SPS is shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system are reported

    Construction and Performance of Large-Area Triple-GEM Prototypes for Future Upgrades of the CMS Forward Muon System

    Get PDF
    At present, part of the forward RPC muon system of the CMS detector at the CERN LHC remains uninstrumented in the high-\eta region. An international collaboration is investigating the possibility of covering the 1.6 < |\eta| < 2.4 region of the muon endcaps with large-area triple-GEM detectors. Given their good spatial resolution, high rate capability, and radiation hardness, these micro-pattern gas detectors are an appealing option for simultaneously enhancing muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study will be presented. The design and construction of small (10\times10 cm2) and full-size trapezoidal (1\times0.5 m2) triple-GEM prototypes will be described. During detector assembly, different techniques for stretching the GEM foils were tested. Results from measurements with x-rays and from test beam campaigns at the CERN SPS will be shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system will be reported.Comment: 7 pages, 25 figures, submitted for publication in conference record of the 2011 IEEE Nuclear Science Symposium, Valencia, Spai

    Operational experience with the GEM detector assembly lines for the CMS forward muon upgrade

    Get PDF
    The CMS Collaboration has been developing large-area triple-gas electron multiplier (GEM) detectors to be installed in the muon Endcap regions of the CMS experiment in 2019 to maintain forward muon trigger and tracking performance at the High-Luminosity upgrade of the Large Hadron Collider (LHC); 10 preproduction detectors were built at CERN to commission the first assembly line and the quality controls (QCs). These were installed in the CMS detector in early 2017 and participated in the 2017 LHC run. The collaboration has prepared several additional assembly and QC lines for distributed mass production of 160 GEM detectors at various sites worldwide. In 2017, these additional production sites have optimized construction techniques and QC procedures and validated them against common specifications by constructing additional preproduction detectors. Using the specific experience from one production site as an example, we discuss how the QCs make use of independent hardware and trained personnel to ensure fast and reliable production. Preliminary results on the construction status of CMS GEM detectors are presented with details of the assembly sites involvement

    A novel application of Fiber Bragg Grating (FBG) sensors in MPGD

    Full text link
    We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.Comment: 4 pages, 4 figures, presented by Luigi Benussi at MPGD 2015 (Trieste, Italy). arXiv admin note: text overlap with arXiv:1512.0848

    Development and performance of Triple-GEM detectors for the upgrade of the muon system of the CMS experiment

    Get PDF
    The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R&D performed on chambers design features and will discuss the performance of the upgraded detector
    • …
    corecore